A double‐robust test for high‐dimensional gene coexpression networks conditioning on clinical information
Author
Abstract
Suggested Citation
DOI: 10.1111/biom.13890
Download full text from publisher
References listed on IDEAS
- Su, Liangjun & White, Halbert, 2007.
"A consistent characteristic function-based test for conditional independence,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 807-834, December.
- Su, Liangjun & White, Halbert, 2003. "A Consistent Characteristic-Function-Based Test for Conditional Independence," University of California at San Diego, Economics Working Paper Series qt4dv0837f, Department of Economics, UC San Diego.
- Jichun Xie & Ruosha Li, 2018. "False discovery rate control for high dimensional networks of quantile associations conditioning on covariates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(5), pages 1015-1034, November.
- Thomas B. Berrett & Yi Wang & Rina Foygel Barber & Richard J. Samworth, 2020. "The conditional permutation test for independence while controlling for confounders," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(1), pages 175-197, February.
- Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2014. "Inference on Treatment Effects after Selection among High-Dimensional Controlsâ€," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(2), pages 608-650.
- Xueqin Wang & Wenliang Pan & Wenhao Hu & Yuan Tian & Heping Zhang, 2015. "Conditional Distance Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1726-1734, December.
- Wang, Xia & Hong, Yongmiao, 2018. "Characteristic Function Based Testing For Conditional Independence: A Nonparametric Regression Approach," Econometric Theory, Cambridge University Press, vol. 34(4), pages 815-849, August.
- Kung‐Yee Liang & Jing Qin, 2000. "Regression analysis under non‐standard situations: a pairwise pseudolikelihood approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 773-786.
- Pan, Lanfeng & Li, Yehua & He, Kevin & Li, Yanming & Li, Yi, 2020. "Generalized linear mixed models with Gaussian mixture random effects: Inference and application," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shi, Chengchun & Xu, Tianlin & Bergsma, Wicher & Li, Lexin, 2021. "Double generative adversarial networks for conditional independence testing," LSE Research Online Documents on Economics 112550, London School of Economics and Political Science, LSE Library.
- Zhou, Yeqing & Liu, Jingyuan & Zhu, Liping, 2020. "Test for conditional independence with application to conditional screening," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Xuehu Zhu & Jun Lu & Jun Zhang & Lixing Zhu, 2021. "Testing for conditional independence: A groupwise dimension reduction‐based adaptive‐to‐model approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 549-576, June.
- Zhang, Yaowu & Zhou, Yeqing & Zhu, Liping, 2024. "A post-screening diagnostic study for ultrahigh dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).
- Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
- Ning, Jing & Pak, Daewoo & Zhu, Hong & Qin, Jing, 2022. "Conditional independence test of failure and truncation times: Essential tool for method selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
- Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
- Xiaojun Song & Haoyu Wei, 2021. "Nonparametric Tests of Conditional Independence for Time Series," Papers 2110.04847, arXiv.org.
- Ai, Chunrong & Sun, Li-Hsien & Zhang, Zheng & Zhu, Liping, 2024. "Testing unconditional and conditional independence via mutual information," Journal of Econometrics, Elsevier, vol. 240(2).
- Xu, Kai & Cheng, Qing, 2024. "Test of conditional independence in factor models via Hilbert–Schmidt independence criterion," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2019.
"Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 749-758, April.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2013. "Valid Post-Selection Inference in High-Dimensional Approximately Sparse Quantile Regression Models," Papers 1312.7186, arXiv.org, revised Jun 2016.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers CWP53/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Kengo Kato, 2014. "Valid post-selection inference in high-dimensional approximately sparse quantile regression models," CeMMAP working papers 53/14, Institute for Fiscal Studies.
- Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024.
"Testing Granger non-causality in expectiles,"
Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
- Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2022. "Testing Granger Non-Causality in Expectiles," Working Papers 202207, University of Liverpool, Department of Economics.
- Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2023. "Testing Granger Non-Causality in Expectiles," University of East Anglia School of Economics Working Paper Series 2023-02, School of Economics, University of East Anglia, Norwich, UK..
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Kaspar Wuthrich & Ying Zhu, 2019. "Omitted variable bias of Lasso-based inference methods: A finite sample analysis," Papers 1903.08704, arXiv.org, revised Sep 2021.
- Dante Amengual & Marine Carrasco & Enrique Sentana, 2017. "Testing Distributional Assumptions Using a Continuum of Moments," Working Papers wp2018_1709, CEMFI.
- Martin Huber, 2019.
"An introduction to flexible methods for policy evaluation,"
Papers
1910.00641, arXiv.org.
- Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Chuan Hong & Yang Ning & Peng Wei & Ying Cao & Yong Chen, 2017. "A semiparametric model for vQTL mapping," Biometrics, The International Biometric Society, vol. 73(2), pages 571-581, June.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:79:y:2023:i:4:p:3227-3238. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.