IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v199y2024ics0047259x23000878.html
   My bibliography  Save this article

Test of conditional independence in factor models via Hilbert–Schmidt independence criterion

Author

Listed:
  • Xu, Kai
  • Cheng, Qing

Abstract

This work is concerned with testing conditional independence under a factor model setting. We propose a novel multivariate test for non-Gaussian data based on the Hilbert–Schmidt independence criterion (HSIC). Theoretically, we investigate the convergence of our test statistic under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution, showing that its consistency is justified. Methodologically, we generalize the HSIC-based independence test approach to a situation where data follow a factor model structure. Our test requires no nonparametric smoothing estimation of functional forms including conditional probability density functions, conditional cumulative distribution functions and conditional characteristic functions under the null or alternative, is computationally efficient and is dimension-free in the sense that the dimension of the conditioning variable is allowed to be large but finite. Further extension to nonlinear, non-Gaussian structure equation models is also described in detail and asymptotic properties are rigorously justified. Numerical studies demonstrate the effectiveness of our proposed test relative to that of several existing tests.

Suggested Citation

  • Xu, Kai & Cheng, Qing, 2024. "Test of conditional independence in factor models via Hilbert–Schmidt independence criterion," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000878
    DOI: 10.1016/j.jmva.2023.105241
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X23000878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2023.105241?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niklas Pfister & Peter Bühlmann & Bernhard Schölkopf & Jonas Peters, 2018. "Kernel‐based tests for joint independence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(1), pages 5-31, January.
    2. Su, Liangjun & White, Halbert, 2007. "A consistent characteristic function-based test for conditional independence," Journal of Econometrics, Elsevier, vol. 141(2), pages 807-834, December.
    3. Su, Liangjun & White, Halbert, 2008. "A Nonparametric Hellinger Metric Test For Conditional Independence," Econometric Theory, Cambridge University Press, vol. 24(4), pages 829-864, August.
    4. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    5. Oliver Linton & Pedro Gozalo, 1996. "Conditional Independence Restrictions: Testing and Estimation," Cowles Foundation Discussion Papers 1140, Cowles Foundation for Research in Economics, Yale University.
    6. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors," Papers 1212.6906, arXiv.org, revised Jan 2018.
    7. A. Sen & B. Sen, 2014. "Testing independence and goodness-of-fit in linear models," Biometrika, Biometrika Trust, vol. 101(4), pages 927-942.
    8. Cencheng Shen & Joshua T. Vogelstein, 2021. "The exact equivalence of distance and kernel methods in hypothesis testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 385-403, September.
    9. Ingrid Keilegom & Wenceslao González Manteiga & César Sánchez Sellero, 2008. "Goodness-of-fit tests in parametric regression based on the estimation of the error distribution," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(2), pages 401-415, August.
    10. Shun Yao & Xianyang Zhang & Xiaofeng Shao, 2018. "Testing mutual independence in high dimension via distance covariance," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(3), pages 455-480, June.
    11. Xueqin Wang & Wenliang Pan & Wenhao Hu & Yuan Tian & Heping Zhang, 2015. "Conditional Distance Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1726-1734, December.
    12. W. Stute & W. L. Xu & L. X. Zhu, 2008. "Model diagnosis for parametric regression in high-dimensional spaces," Biometrika, Biometrika Trust, vol. 95(2), pages 451-467.
    13. Vaart,A. W. van der, 2000. "Asymptotic Statistics," Cambridge Books, Cambridge University Press, number 9780521784504, September.
    14. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    15. Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
    2. Zhang, Yaowu & Zhou, Yeqing & Zhu, Liping, 2024. "A post-screening diagnostic study for ultrahigh dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).
    3. Zhou, Yeqing & Liu, Jingyuan & Zhu, Liping, 2020. "Test for conditional independence with application to conditional screening," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
    4. Xuehu Zhu & Jun Lu & Jun Zhang & Lixing Zhu, 2021. "Testing for conditional independence: A groupwise dimension reduction‐based adaptive‐to‐model approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 549-576, June.
    5. Bertrand Candelon & Sessi Tokpavi, 2016. "A Nonparametric Test for Granger Causality in Distribution With Application to Financial Contagion," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 240-253, April.
    6. Huang, Meng & Sun, Yixiao & White, Halbert, 2016. "A Flexible Nonparametric Test For Conditional Independence," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1434-1482, December.
    7. Li, Haiqi & Zhong, Wanling & Park, Sung Y., 2016. "Generalized cross-spectral test for nonlinear Granger causality with applications to money–output and price–volume relations," Economic Modelling, Elsevier, vol. 52(PB), pages 661-671.
    8. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    9. Cheng, Yu-Hsiang & Huang, Tzee-Ming, 2012. "A conditional independence test for dependent data based on maximal conditional correlation," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 210-226.
    10. Xiaojun Song & Haoyu Wei, 2021. "Nonparametric Tests of Conditional Independence for Time Series," Papers 2110.04847, arXiv.org.
    11. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    12. Su, Liangjun & Zheng, Xin, 2017. "A martingale-difference-divergence-based test for specification," Economics Letters, Elsevier, vol. 156(C), pages 162-167.
    13. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    14. Ai, Chunrong & Sun, Li-Hsien & Zhang, Zheng & Zhu, Liping, 2024. "Testing unconditional and conditional independence via mutual information," Journal of Econometrics, Elsevier, vol. 240(2).
    15. Taoufik Bouezmarni & Mohamed Doukali & Abderrahim Taamouti, 2024. "Testing Granger non-causality in expectiles," Econometric Reviews, Taylor & Francis Journals, vol. 43(1), pages 30-51, January.
    16. Hoderlein, Stefan & Su, Liangjun & White, Halbert & Yang, Thomas Tao, 2016. "Testing for monotonicity in unobservables under unconfoundedness," Journal of Econometrics, Elsevier, vol. 193(1), pages 183-202.
    17. repec:cte:werepe:we1211 is not listed on IDEAS
    18. Demian Pouzo, 2014. "Bootstrap Consistency for Quadratic Forms of Sample Averages with Increasing Dimension," Papers 1411.2701, arXiv.org, revised Aug 2015.
    19. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    20. Shi, Chengchun & Xu, Tianlin & Bergsma, Wicher & Li, Lexin, 2021. "Double generative adversarial networks for conditional independence testing," LSE Research Online Documents on Economics 112550, London School of Economics and Political Science, LSE Library.
    21. Cuizhen Niu & Lixing Zhu, 2018. "A robust adaptive-to-model enhancement test for parametric single-index models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(5), pages 1013-1045, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:199:y:2024:i:c:s0047259x23000878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.