IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v216y2025ics0167715224002220.html
   My bibliography  Save this article

Consistent tests for semiparametric conditional independence

Author

Listed:
  • Dai, Shengtao
  • Song, Xiaojun

Abstract

We propose new joint tests of the semiparametric conditional independence assumption and provide their asymptotic properties. To overcome the problem caused by the parameter estimation effect, we employ a convenient multiplier bootstrap to approximate the limiting distributions of the test statistics.

Suggested Citation

  • Dai, Shengtao & Song, Xiaojun, 2025. "Consistent tests for semiparametric conditional independence," Statistics & Probability Letters, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002220
    DOI: 10.1016/j.spl.2024.110253
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715224002220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2024.110253?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Liangjun & White, Halbert, 2007. "A consistent characteristic function-based test for conditional independence," Journal of Econometrics, Elsevier, vol. 141(2), pages 807-834, December.
    2. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, November.
    3. Fan, Yanqin, 1997. "Goodness-of-Fit Tests for a Multivariate Distribution by the Empirical Characteristic Function," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 36-63, July.
    4. Joshua D. Angrist & Guido M. Kuersteiner, 2011. "Causal Effects of Monetary Shocks: Semiparametric Conditional Independence Tests with a Multinomial Propensity Score," The Review of Economics and Statistics, MIT Press, vol. 93(3), pages 725-747, August.
    5. Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
    6. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    7. Donald, Stephen G. & Hsu, Yu-Chin, 2014. "Estimation and inference for distribution functions and quantile functions in treatment effect models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 383-397.
    8. Oliver Linton & Pedro Gozalo, 2014. "Testing Conditional Independence Restrictions," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 523-552, August.
    9. Bierens, Herman J. & Wang, Li, 2012. "Integrated Conditional Moment Tests For Parametric Conditional Distributions," Econometric Theory, Cambridge University Press, vol. 28(2), pages 328-362, April.
    10. Fan, Yanqin, 1998. "Goodness-Of-Fit Tests Based On Kernel Density Estimators With Fixed Smoothing Parameters," Econometric Theory, Cambridge University Press, vol. 14(5), pages 604-621, October.
    11. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    12. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    13. Fan, Yanqin, 1994. "Testing the Goodness of Fit of a Parametric Density Function by Kernel Method," Econometric Theory, Cambridge University Press, vol. 10(2), pages 316-356, June.
    14. Yongmiao Hong & Xia Wang & Shouyang Wang, 2017. "Testing Strict Stationarity With Applications To Macroeconomic Time Series," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 58(4), pages 1227-1277, November.
    15. Stephen G. Donald & Yu-Chin Hsu, 2016. "Improving the Power of Tests of Stochastic Dominance," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 553-585, April.
    16. Escanciano, J. Carlos, 2006. "A Consistent Diagnostic Test For Regression Models Using Projections," Econometric Theory, Cambridge University Press, vol. 22(6), pages 1030-1051, December.
    17. Zheng, John Xu, 2000. "A Consistent Test Of Conditional Parametric Distributions," Econometric Theory, Cambridge University Press, vol. 16(5), pages 667-691, October.
    18. Donald W. K. Andrews, 1997. "A Conditional Kolmogorov Test," Econometrica, Econometric Society, vol. 65(5), pages 1097-1128, September.
    19. Garry F. Barrett & Stephen G. Donald, 2003. "Consistent Tests for Stochastic Dominance," Econometrica, Econometric Society, vol. 71(1), pages 71-104, January.
    20. Su, Liangjun & White, Halbert, 2008. "A Nonparametric Hellinger Metric Test For Conditional Independence," Econometric Theory, Cambridge University Press, vol. 24(4), pages 829-864, August.
    21. Xu Zheng, 2012. "Testing parametric conditional distributions using the nonparametric smoothing method," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 75(4), pages 455-469, May.
    22. Fan, Yanqin & Li, Qi & Min, Insik, 2006. "A Nonparametric Bootstrap Test Of Conditional Distributions," Econometric Theory, Cambridge University Press, vol. 22(4), pages 587-613, August.
    23. Cao, Ricardo & Gonzalez-Manteiga, Wenceslao, 2008. "Goodness-of-fit tests for conditional models under censoring and truncation," Journal of Econometrics, Elsevier, vol. 143(1), pages 166-190, March.
    24. Victor Troster, 2018. "Testing for Granger-causality in quantiles," Econometric Reviews, Taylor & Francis Journals, vol. 37(8), pages 850-866, September.
    25. Wang, Xia & Hong, Yongmiao, 2018. "Characteristic Function Based Testing For Conditional Independence: A Nonparametric Regression Approach," Econometric Theory, Cambridge University Press, vol. 34(4), pages 815-849, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    2. Xiaojun Song & Haoyu Wei, 2021. "Nonparametric Tests of Conditional Independence for Time Series," Papers 2110.04847, arXiv.org.
    3. Su, Liangjun & Zheng, Xin, 2017. "A martingale-difference-divergence-based test for specification," Economics Letters, Elsevier, vol. 156(C), pages 162-167.
    4. Xuehu Zhu & Jun Lu & Jun Zhang & Lixing Zhu, 2021. "Testing for conditional independence: A groupwise dimension reduction‐based adaptive‐to‐model approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 549-576, June.
    5. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    6. Wang, Hongfei & Liu, Binghui & Feng, Long & Ma, Yanyuan, 2024. "Rank-based max-sum tests for mutual independence of high-dimensional random vectors," Journal of Econometrics, Elsevier, vol. 238(1).
    7. Amengual, Dante & Carrasco, Marine & Sentana, Enrique, 2020. "Testing distributional assumptions using a continuum of moments," Journal of Econometrics, Elsevier, vol. 218(2), pages 655-689.
    8. Cui Rui & Li Yuhao, 2024. "Goodness-of-Fit for Conditional Distributions: An Approach Using Principal Component Analysis and Component Selection," Papers 2403.10352, arXiv.org.
    9. Ai, Chunrong & Sun, Li-Hsien & Zhang, Zheng & Zhu, Liping, 2024. "Testing unconditional and conditional independence via mutual information," Journal of Econometrics, Elsevier, vol. 240(2).
    10. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    11. Wang, Xuexin, 2015. "A Note on Consistent Conditional Moment Tests," MPRA Paper 69005, University Library of Munich, Germany.
    12. Chen, Bin & Hong, Yongmiao, 2014. "A unified approach to validating univariate and multivariate conditional distribution models in time series," Journal of Econometrics, Elsevier, vol. 178(P1), pages 22-44.
    13. Lavergne, Pascal & Patilea, Valentin, 2008. "Breaking the curse of dimensionality in nonparametric testing," Journal of Econometrics, Elsevier, vol. 143(1), pages 103-122, March.
    14. Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011. "Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
    15. Yanqin Fan & Oliver Linton, 1997. "Some Higher Order Theory for a Consistent Nonparametric Model Specification Test," Cowles Foundation Discussion Papers 1148, Cowles Foundation for Research in Economics, Yale University.
    16. Chen, Bin & Hong, Yongmiao, 2012. "Testing For The Markov Property In Time Series," Econometric Theory, Cambridge University Press, vol. 28(1), pages 130-178, February.
    17. Juan Carlos Escanciano, 2004. "Model Checks Using Residual Marked Empirical Processes," Faculty Working Papers 13/04, School of Economics and Business Administration, University of Navarra.
    18. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    19. Domínguez, Manuel A. & Lavergne, Pascal, 1998. "Asymptotic and bootstrap specification tests of nonlinear in variable econometric models," DES - Working Papers. Statistics and Econometrics. WS 4674, Universidad Carlos III de Madrid. Departamento de Estadística.
    20. Chen, Bin & Hong, Yongmiao, 2011. "Generalized spectral testing for multivariate continuous-time models," Journal of Econometrics, Elsevier, vol. 164(2), pages 268-293, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:216:y:2025:i:c:s0167715224002220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.