IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt4dv0837f.html
   My bibliography  Save this paper

A Consistent Characteristic-Function-Based Test for Conditional Independence

Author

Listed:
  • Su, Liangjun
  • White, Halbert

Abstract

This paper proposes a nonparametric test of conditional independence based on the notion that two conditional distributions are equal if and only if the corresponding conditional characteristic functions are equal. We use the functional delta method to expand the test statistic around the population truth and establish asymptotic normality under $\beta -$mixing conditions. We show that the test is consistent and has power against local alternatives at distance $n^{-1/2}h_{1}^{-(d_{1}+d_{3})/4}.$ The cases for which not all random variables of interest are\ continuously valued or observable are also treated, and we show that the test is nuisance-parameter free. Simulation results suggest that the test has better finite sample performance than the Hellinger metric test of Su and White (2002) in detecting nonlinear Granger causality in the mean. Applications to exchange rates and to stock prices and trading volumes indicate that our test can reveal some interesting nonlinear causal relations that the traditional linear Granger causality test fails to detect.

Suggested Citation

  • Su, Liangjun & White, Halbert, 2003. "A Consistent Characteristic-Function-Based Test for Conditional Independence," University of California at San Diego, Economics Working Paper Series qt4dv0837f, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt4dv0837f
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/4dv0837f.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    2. Li, Qi, 1999. "Consistent model specification tests for time series econometric models," Journal of Econometrics, Elsevier, vol. 92(1), pages 101-147, September.
    3. Lobato, Ignacio N, 2003. "Testing for Nonlinear Autoregression," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 164-173, January.
    4. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    5. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(3), pages 295-325, June.
    6. Lavergne, Pascal & Vuong, Quang, 2000. "Nonparametric Significance Testing," Econometric Theory, Cambridge University Press, vol. 16(4), pages 576-601, August.
    7. Hsieh, David A, 1989. "Testing for Nonlinear Dependence in Daily Foreign Exchange Rates," The Journal of Business, University of Chicago Press, vol. 62(3), pages 339-368, July.
    8. Pinkse, Joris, 1998. "A consistent nonparametric test for serial independence," Journal of Econometrics, Elsevier, vol. 84(2), pages 205-231, June.
    9. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Lag Selection for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(4), pages 457-487, July.
    10. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    11. Lee, Sokbae, 2003. "Efficient Semiparametric Estimation Of A Partially Linear Quantile Regression Model," Econometric Theory, Cambridge University Press, vol. 19(1), pages 1-31, February.
    12. Sheedy, Elizabeth, 1998. "Correlation in currency markets a risk-adjusted perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 8(1), pages 59-82, January.
    13. Hjellvik, Vidar & Yao, Qiwei & Tjostheim, Dag, 1998. "Linearity testing using local polynominal approximation," LSE Research Online Documents on Economics 6638, London School of Economics and Political Science, LSE Library.
    14. Yongmiao Hong & Halbert White, 2005. "Asymptotic Distribution Theory for Nonparametric Entropy Measures of Serial Dependence," Econometrica, Econometric Society, vol. 73(3), pages 837-901, May.
    15. Granger, C. W. J., 1980. "Testing for causality : A personal viewpoint," Journal of Economic Dynamics and Control, Elsevier, vol. 2(1), pages 329-352, May.
    16. Hiemstra, Craig & Jones, Jonathan D, 1994. "Testing for Linear and Nonlinear Granger Causality in the Stock Price-Volume Relation," Journal of Finance, American Finance Association, vol. 49(5), pages 1639-1664, December.
    17. Efstathios Paparoditis & Dimitris Politis, 2000. "The Local Bootstrap for Kernel Estimators under General Dependence Conditions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(1), pages 139-159, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    2. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    3. Zongwu Cai & Ying Fang & Ming Lin & Shengfang Tang, 2020. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202004, University of Kansas, Department of Economics, revised Feb 2020.
    4. Cho, Jin Seo & White, Halbert, 2011. "Generalized runs tests for the IID hypothesis," Journal of Econometrics, Elsevier, vol. 162(2), pages 326-344, June.
    5. Shengfang Tang & Zongwu Cai & Ying Fang & Ming Lin, 2019. "Testing Unconfoundedness Assumption Using Auxiliary Variables," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201905, University of Kansas, Department of Economics, revised Mar 2019.
    6. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    7. Sungwon Lee & Joon H. Ro, 2020. "Nonparametric Tests for Conditional Quantile Independence with Duration Outcomes," Working Papers 2013, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    8. Ignacio N. Lobato, 2000. "A Consistent Test for the Martingale Difference Assumption," Econometric Society World Congress 2000 Contributed Papers 0278, Econometric Society.
    9. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    10. Masamune Iwasawa, 2015. "A Joint Specification Test for Response Probabilities in Unordered Multinomial Choice Models," Econometrics, MDPI, vol. 3(3), pages 1-31, September.
    11. Ying Fang & Ming Lin & Shengfang Tang & Zongwu Cai, 2021. "Testing Conditional Independence in Macroeconomic Policy Evaluation for Time Series Data," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202118, University of Kansas, Department of Economics, revised Sep 2021.
    12. Li, Qi & Hsiao, Cheng & Zinn, Joel, 2003. "Consistent specification tests for semiparametric/nonparametric models based on series estimation methods," Journal of Econometrics, Elsevier, vol. 112(2), pages 295-325, February.
    13. Ait-Sahalia, Yacine & Bickel, Peter J. & Stoker, Thomas M., 2001. "Goodness-of-fit tests for kernel regression with an application to option implied volatilities," Journal of Econometrics, Elsevier, vol. 105(2), pages 363-412, December.
    14. Lavergne, Pascal & Patilea, Valentin, 2008. "Breaking the curse of dimensionality in nonparametric testing," Journal of Econometrics, Elsevier, vol. 143(1), pages 103-122, March.
    15. Su, Liangjun & Jin, Sainan & Zhang, Yonghui, 2015. "Specification test for panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 186(1), pages 222-244.
    16. Chen, Xiaohong & Fan, Yanqin, 1999. "Consistent hypothesis testing in semiparametric and nonparametric models for econometric time series," Journal of Econometrics, Elsevier, vol. 91(2), pages 373-401, August.
    17. Hall, Peter & Yatchew, Adonis, 2005. "Unified approach to testing functional hypotheses in semiparametric contexts," Journal of Econometrics, Elsevier, vol. 127(2), pages 225-252, August.
    18. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    19. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    20. Gao, Jiti & Tong, Howell & Wolff, Rodney, 2002. "Model Specification Tests in Nonparametric Stochastic Regression Models," Journal of Multivariate Analysis, Elsevier, vol. 83(2), pages 324-359, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt4dv0837f. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.