Conditional Distance Correlation
Author
Abstract
Suggested Citation
DOI: 10.1080/01621459.2014.993081
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Schick, Anton, 1997. "On U-statistics with random kernels," Statistics & Probability Letters, Elsevier, vol. 34(3), pages 275-283, June.
- Su, Liangjun & White, Halbert, 2007.
"A consistent characteristic function-based test for conditional independence,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 807-834, December.
- Su, Liangjun & White, Halbert, 2003. "A Consistent Characteristic-Function-Based Test for Conditional Independence," University of California at San Diego, Economics Working Paper Series qt4dv0837f, Department of Economics, UC San Diego.
- Fan, Yanqin & Li, Qi, 1996. "Consistent Model Specification Tests: Omitted Variables and Semiparametric Functional Forms," Econometrica, Econometric Society, vol. 64(4), pages 865-890, July.
- Scutari, Marco, 2010. "Learning Bayesian Networks with the bnlearn R Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 35(i03).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yi Liu & Qihua Wang, 2018. "Model-free feature screening for ultrahigh-dimensional data conditional on some variables," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(2), pages 283-301, April.
- Ke, Chenlu & Yang, Wei & Yuan, Qingcong & Li, Lu, 2023. "Partial sufficient variable screening with categorical controls," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Xu, Kai & Cheng, Qing, 2024. "Test of conditional independence in factor models via Hilbert–Schmidt independence criterion," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
- Shi, Chengchun & Xu, Tianlin & Bergsma, Wicher & Li, Lexin, 2021. "Double generative adversarial networks for conditional independence testing," LSE Research Online Documents on Economics 112550, London School of Economics and Political Science, LSE Library.
- Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
- Jun Lu & Lu Lin, 2020. "Model-free conditional screening via conditional distance correlation," Statistical Papers, Springer, vol. 61(1), pages 225-244, February.
- Yuan, Qingcong & Chen, Xianyan & Ke, Chenlu & Yin, Xiangrong, 2022. "Independence index sufficient variable screening for categorical responses," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Zhou, Yeqing & Liu, Jingyuan & Zhu, Liping, 2020. "Test for conditional independence with application to conditional screening," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
- Dominic Edelmann & Thomas Welchowski & Axel Benner, 2022. "A consistent version of distance covariance for right‐censored survival data and its application in hypothesis testing," Biometrics, The International Biometric Society, vol. 78(3), pages 867-879, September.
- Cencheng Shen & Joshua T. Vogelstein, 2021. "The exact equivalence of distance and kernel methods in hypothesis testing," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 105(3), pages 385-403, September.
- Maomao Ding & Ruosha Li & Jin Qin & Jing Ning, 2023. "A double‐robust test for high‐dimensional gene coexpression networks conditioning on clinical information," Biometrics, The International Biometric Society, vol. 79(4), pages 3227-3238, December.
- Xinyi Xu & Jingxiao Zhang, 2020. "Groupwise sufficient dimension reduction via conditional distance clustering," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 83(2), pages 217-242, February.
- Soale, Abdul-Nasah, 2023. "Projection expectile regression for sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 180(C).
- Xuehu Zhu & Jun Lu & Jun Zhang & Lixing Zhu, 2021. "Testing for conditional independence: A groupwise dimension reduction‐based adaptive‐to‐model approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 549-576, June.
- Fan, Jianqing & Feng, Yang & Xia, Lucy, 2020. "A projection-based conditional dependence measure with applications to high-dimensional undirected graphical models," Journal of Econometrics, Elsevier, vol. 218(1), pages 119-139.
- Dingke Tang & Dehan Kong & Wenliang Pan & Linbo Wang, 2023. "Ultra‐high dimensional variable selection for doubly robust causal inference," Biometrics, The International Biometric Society, vol. 79(2), pages 903-914, June.
- Zhang, Yaowu & Zhou, Yeqing & Zhu, Liping, 2024. "A post-screening diagnostic study for ultrahigh dimensional data," Journal of Econometrics, Elsevier, vol. 239(2).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2011.
"Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(2), pages 275-287, October.
- BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen & TAAMOUTI, Abderrahim, 2009. "A nonparametric copula based test for conditional independence with applications to Granger causality," LIDAM Discussion Papers CORE 2009041, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Bouezmarni, Taoufik & Rombouts, Jeroen V. K., 2009. "A nonparametric copula based test for conditional independence with applications to granger causality," UC3M Working papers. Economics we093419, Universidad Carlos III de Madrid. Departamento de EconomÃa.
- Taoufik Bouezmarni & Jeroen Rombouts & Abderrahim Taamouti, 2009. "A Nonparametric Copula Based Test for Conditional Independence with Applications to Granger Causality," CIRANO Working Papers 2009s-28, CIRANO.
- Taoufik Bouezmarni & Jeroen V.K. Rombouts & Abderrahim Taamouti, 2009. "A Nonparametric Copula Based Test for Conditional Independence with Applications to Granger Causality," Cahiers de recherche 0927, CIRPEE.
- Xuehu Zhu & Jun Lu & Jun Zhang & Lixing Zhu, 2021. "Testing for conditional independence: A groupwise dimension reduction‐based adaptive‐to‐model approach," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 549-576, June.
- Nianqing Liu & Quang Vuong & Haiqing Xu, 2012. "Rationalization and Identification of Discrete Games with Correlated Types," Department of Economics Working Papers 130915, The University of Texas at Austin, Department of Economics.
- Liu, Nianqing & Vuong, Quang & Xu, Haiqing, 2017. "Rationalization and identification of binary games with correlated types," Journal of Econometrics, Elsevier, vol. 201(2), pages 249-268.
- Marcelo Fernandes & Breno Neri, 2010.
"Nonparametric Entropy-Based Tests of Independence Between Stochastic Processes,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 276-306.
- Fernandes, Marcelo, 2001. "Nonparametric entropy-based tests of independence between stochastic processes," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 413, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Jinhyun Lee, 2013. "A Consistent Nonparametric Bootstrap Test of Exogeneity," Discussion Paper Series, School of Economics and Finance 201316, School of Economics and Finance, University of St Andrews.
- Prabal Das & D. A. Sachindra & Kironmala Chanda, 2022. "Machine Learning-Based Rainfall Forecasting with Multiple Non-Linear Feature Selection Algorithms," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(15), pages 6043-6071, December.
- Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
- Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014.
"Semiparametric methods in nonlinear time series analysis: a selective review,"
Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
- Patrick Saart & Jiti Gao, 2012. "Semiparametric Methods in Nonlinear Time Series Analysis: A Selective Review," Monash Econometrics and Business Statistics Working Papers 21/12, Monash University, Department of Econometrics and Business Statistics.
- Temel, Tugrul T., 2001.
"A Nonparametric Hypothesis Test Via The Bootstrap Resampling,"
2001 Annual meeting, August 5-8, Chicago, IL
20600, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Temel, Tugrul, 2011. "A nonparametric hypothesis test via the Bootstrap resampling," MPRA Paper 31880, University Library of Munich, Germany.
- Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
- Fernandes, Marcelo & Grammig, Joachim, 2005.
"Nonparametric specification tests for conditional duration models,"
Journal of Econometrics, Elsevier, vol. 127(1), pages 35-68, July.
- Fernandes, M. & Grammig, J., 2000. "Non-Parametric Specification Tests for Conditional Duration Models," Economics Working Papers eco2000/4, European University Institute.
- Marcelo Fernandes & Joachim Grammig, 2000. "Non-Parametric Specification Tests For Conditional Duration Models," Computing in Economics and Finance 2000 40, Society for Computational Economics.
- Fernandes, Marcelo & Grammig, Joachim, 2003. "Nonparametric specification tests for conditional duration models," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 502, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
- Roland R. Ramsahai, 2020. "Connecting actuarial judgment to probabilistic learning techniques with graph theory," Papers 2007.15475, arXiv.org.
- Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
- Chen, Song Xi & Gao, Jiti & Tang, Chenghong, 2005. "A test for model specification of diffusion processes," MPRA Paper 11976, University Library of Munich, Germany, revised Feb 2007.
- repec:ebl:ecbull:v:3:y:2005:i:11:p:1-10 is not listed on IDEAS
- Wei Huang & Oliver Linton & Zheng Zhang, 2022. "A Unified Framework for Specification Tests of Continuous Treatment Effect Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1817-1830, October.
- Myriam Patricia Cifuentes & Clara Mercedes Suarez & Ricardo Cifuentes & Noel Malod-Dognin & Sam Windels & Jose Fernando Valderrama & Paul D. Juarez & R. Burciaga Valdez & Cynthia Colen & Charles Phill, 2022. "Big Data to Knowledge Analytics Reveals the Zika Virus Epidemic as Only One of Multiple Factors Contributing to a Year-Over-Year 28-Fold Increase in Microcephaly Incidence," IJERPH, MDPI, vol. 19(15), pages 1-21, July.
- Silvia de Juan & Maria Dulce Subida & Andres Ospina-Alvarez & Ainara Aguilar & Miriam Fernandez, 2020. "Disentangling the socio-ecological drivers behind illegal fishing in a small-scale fishery managed by a TURF system," Papers 2012.08970, arXiv.org.
- Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
- Michail Tsagris, 2021. "A New Scalable Bayesian Network Learning Algorithm with Applications to Economics," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 341-367, January.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:110:y:2015:i:512:p:1726-1734. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.