IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v70y2014i4p993-1002.html
   My bibliography  Save this article

Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011

Author

Listed:
  • Michael Höhle
  • Matthias an der Heiden

Abstract

No abstract is available for this item.

Suggested Citation

  • Michael Höhle & Matthias an der Heiden, 2014. "Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011," Biometrics, The International Biometric Society, vol. 70(4), pages 993-1002, December.
  • Handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:993-1002
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/biom.12194
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    2. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    3. Douglas N. Midthune & Michael P. Fay & Limin X. Clegg & Eric J. Feuer, 2005. "Modeling Reporting Delays and Reporting Corrections in Cancer Registry Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 61-70, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Salmon, Maëlle & Schumacher, Dirk & Höhle, Michael, 2016. "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i10).
    2. Oliver Stoner & Alba Halliday & Theo Economou, 2023. "Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method," Biometrics, The International Biometric Society, vol. 79(3), pages 2537-2550, September.
    3. Oliver Stoner & Theo Economou, 2020. "Multivariate hierarchical frameworks for modeling delayed reporting in count data," Biometrics, The International Biometric Society, vol. 76(3), pages 789-798, September.
    4. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held, 2022. "Session 3 of the RSS Special Topic Meeting on Covid‐19 Transmission: Replies to the discussion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 158-164, November.
    5. Aghabazaz, Zeynab & Kazemi, Iraj, 2023. "Under-reported time-varying MINAR(1) process for modeling multivariate count series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    6. Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    7. Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2019. "Addendum: Wang et al. A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases. Int. J. Environ. Res. Public Health , 2018, 15(8):1740; doi:10.3390/ijerph15081740," IJERPH, MDPI, vol. 16(8), pages 1-3, April.
    8. Angela Noufaily & Paddy Farrington & Paul Garthwaite & Doyo Gragn Enki & Nick Andrews & Andre Charlett, 2016. "Detection of Infectious Disease Outbreaks From Laboratory Data With Reporting Delays," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 488-499, April.
    9. Shaun R. Seaman & Pantelis Samartsidis & Meaghan Kall & Daniela De Angelis, 2022. "Nowcasting COVID‐19 deaths in England by age and region," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1266-1281, November.
    10. Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2018. "A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases," IJERPH, MDPI, vol. 15(8), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. László Martinek, 2019. "Analysis of Stochastic Reserving Models By Means of NAIC Claims Data," Risks, MDPI, vol. 7(2), pages 1-27, June.
    2. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    3. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    4. Lars Hougaard Hansen & Bent Nielsen & Jens Perch Nielsen, 2004. "Two sided analysis of variance with a latent time series," Economics Papers 2004-W25, Economics Group, Nuffield College, University of Oxford.
    5. COSTA, JUAN IGNACIO BACCINO & DE ARMAS, GONZALO & Álvarez-Vaz, Ramón Dr., 2022. "Estudio De Algunos Métodos De Reservas Técnicas En Condiciones De Incertidumbre Para Seguros De No Vida (Study Of Some Methods Of Technical Reserves Under Conditions Of Uncertainty For Non-Life Insura," OSF Preprints 3pjr9, Center for Open Science.
    6. Emmanuel Jordy Menvouta & Jolien Ponnet & Robin Van Oirbeek & Tim Verdonck, 2022. "mCube: Multinomial Micro-level reserving Model," Papers 2212.00101, arXiv.org.
    7. Gian Paolo Clemente & Nino Savelli & Diego Zappa, 2019. "Modelling Outstanding Claims with Mixed Compound Processes in Insurance," International Business Research, Canadian Center of Science and Education, vol. 12(3), pages 123-138, March.
    8. Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
    9. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    10. James Mitchell & Martin Weale, 2023. "Censored density forecasts: Production and evaluation," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 714-734, August.
    11. Corneliu Cristian Bente, 2017. "Actuarial Estimation Of Technical Reserves In Insurance Companies. Basic Chain Ladder Method," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 227-234, July.
    12. Francis Duval & Mathieu Pigeon, 2019. "Individual Loss Reserving Using a Gradient Boosting-Based Approach," Risks, MDPI, vol. 7(3), pages 1-18, July.
    13. D. Kuang & B. Nielsen & J. P. Nielsen, 2008. "Identification of the age-period-cohort model and the extended chain-ladder model," Biometrika, Biometrika Trust, vol. 95(4), pages 979-986.
    14. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    15. Lu, Ye & Suthaharan, Neyavan, 2023. "Electricity price spike clustering: A zero-inflated GARX approach," Energy Economics, Elsevier, vol. 124(C).
    16. Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    17. Ihsan Chaoubi & Camille Besse & H'el`ene Cossette & Marie-Pier C^ot'e, 2022. "Micro-level Reserving for General Insurance Claims using a Long Short-Term Memory Network," Papers 2201.13267, arXiv.org.
    18. Bent Nielsen, 2014. "Deviance analysis of age-period-cohort models," Economics Papers 2014-W03, Economics Group, Nuffield College, University of Oxford.
    19. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    20. M. Hiabu & E. Mammen & M. D. Martìnez-Miranda & J. P. Nielsen, 2016. "In-sample forecasting with local linear survival densities," Biometrika, Biometrika Trust, vol. 103(4), pages 843-859.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:70:y:2014:i:4:p:993-1002. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.