IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v11y2023i11p185-d1267129.html
   My bibliography  Save this article

Model Error (or Ambiguity) and Its Estimation, with Particular Application to Loss Reserving

Author

Listed:
  • Greg Taylor

    (School of Risk and Actuarial Studies, University of New South Wales, Randwick, NSW 2052, Australia)

  • Gráinne McGuire

    (Taylor Fry, 45 Clarence Street, Sydney, NSW 2000, Australia)

Abstract

This paper is concerned with the estimation of forecast error, particularly in relation to insurance loss reserving. Forecast error is generally regarded as consisting of three components, namely parameter, process and model errors. The first two of these components, and their estimation, are well understood, but less so model error. Model error itself is considered in two parts: one part that is capable of estimation from past data (internal model error), and another part that is not (external model error). Attention is focused here on internal model error. Estimation of this error component is approached by means of Bayesian model averaging, using the Bayesian interpretation of the LASSO. This is used to generate a set of admissible models, each with its prior probability and likelihood of observed data. A posterior on the model set, conditional on the data, may then be calculated. An estimate of model error (for a loss reserve estimate) is obtained as the variance of the loss reserve according to this posterior. The population of models entering materially into the support of the posterior may turn out to be “thinner” than desired, and bootstrapping of the LASSO is used to increase this population. This also provides the bonus of an estimate of parameter error. It turns out that the estimates of parameter and model errors are entangled, and dissociation of them is at least difficult, and possibly not even meaningful. These matters are discussed. The majority of the discussion applies to forecasting generally, but numerical illustration of the concepts is given in relation to insurance data and the problem of insurance loss reserving.

Suggested Citation

  • Greg Taylor & Gráinne McGuire, 2023. "Model Error (or Ambiguity) and Its Estimation, with Particular Application to Loss Reserving," Risks, MDPI, vol. 11(11), pages 1-28, October.
  • Handle: RePEc:gam:jrisks:v:11:y:2023:i:11:p:185-:d:1267129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/11/11/185/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/11/11/185/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Avanzi & Mark Lavender & Greg Taylor & Bernard Wong, 2022. "On the impact of outliers in loss reserving," Papers 2203.00184, arXiv.org, revised Jun 2023.
    2. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    3. Yanwei Zhang & Vanja Dukic, 2013. "Predicting Multivariate Insurance Loss Payments Under the Bayesian Copula Framework," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 891-919, December.
    4. Taylor, G. C., 1985. "Combination of estimates of outstanding claims in non-life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 4(2), pages 81-91, April.
    5. Dahms, René, 2018. "Chain-Ladder Method And Midyear Loss Reserving," ASTIN Bulletin, Cambridge University Press, vol. 48(1), pages 3-24, January.
    6. Schneider, Judith C. & Schweizer, Nikolaus, 2015. "Robust measurement of (heavy-tailed) risks: Theory and implementation," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 183-203.
    7. Taylor, G. C. & Ashe, F. R., 1983. "Second moments of estimates of outstanding claims," Journal of Econometrics, Elsevier, vol. 23(1), pages 37-61, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    2. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    3. Stephens, David A. & Crowder, Martin J. & Dellaportas, Petros, 2004. "Quantification of automobile insurance liability: a Bayesian failure time approach," Insurance: Mathematics and Economics, Elsevier, vol. 34(1), pages 1-21, February.
    4. Portugal, Luís & Pantelous, Athanasios A. & Verrall, Richard, 2021. "Univariate and multivariate claims reserving with Generalized Link Ratios," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 57-67.
    5. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2016. "Stochastic loss reserving with dependence: A flexible multivariate Tweedie approach," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 63-78.
    6. repec:ehu:cuader:21773 is not listed on IDEAS
    7. Verrall, R.J. & England, P.D., 2005. "Incorporating expert opinion into a stochastic model for the chain-ladder technique," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 355-370, October.
    8. Taylor, Greg, 2021. "A special Tweedie sub-family with application to loss reserving prediction error," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 262-288.
    9. Gao, Guangyuan & Meng, Shengwang & Shi, Yanlin, 2021. "Dispersion modelling of outstanding claims with double Poisson regression models," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 572-586.
    10. Björkwall, Susanna & Hössjer, Ola & Ohlsson, Esbjörn & Verrall, Richard, 2011. "A generalized linear model with smoothing effects for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 27-37, July.
    11. D Kuang & Bent Nielsen & J P Nielsen, 2013. "The Geometric Chain-Ladder," Economics Papers 2013-W11, Economics Group, Nuffield College, University of Oxford.
    12. Jonas Harnau, 2018. "Log-Normal or Over-Dispersed Poisson?," Risks, MDPI, vol. 6(3), pages 1-37, July.
    13. Jonas Harnau, 2018. "Misspecification Tests for Log-Normal and Over-Dispersed Poisson Chain-Ladder Models," Risks, MDPI, vol. 6(2), pages 1-25, March.
    14. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Economics Papers 2018-W02, Economics Group, Nuffield College, University of Oxford.
    15. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    16. England, P.D. & Verrall, R.J. & Wüthrich, M.V., 2019. "On the lifetime and one-year views of reserve risk, with application to IFRS 17 and Solvency II risk margins," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 74-88.
    17. Verdonck, T. & Debruyne, M., 2011. "The influence of individual claims on the chain-ladder estimates: Analysis and diagnostic tool," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 85-98, January.
    18. Nataliya Chukhrova & Arne Johannssen, 2017. "State Space Models and the K alman -Filter in Stochastic Claims Reserving: Forecasting, Filtering and Smoothing," Risks, MDPI, vol. 5(2), pages 1-23, May.
    19. Pitselis, Georgios & Grigoriadou, Vasiliki & Badounas, Ioannis, 2015. "Robust loss reserving in a log-linear model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 14-27.
    20. Lally, Nathan & Hartman, Brian, 2018. "Estimating loss reserves using hierarchical Bayesian Gaussian process regression with input warping," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 124-140.
    21. Nataliya Chukhrova & Arne Johannssen, 2021. "Stochastic Claims Reserving Methods with State Space Representations: A Review," Risks, MDPI, vol. 9(11), pages 1-55, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:11:y:2023:i:11:p:185-:d:1267129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.