IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v15y2024i3d10.1007_s13132-023-01503-6.html
   My bibliography  Save this article

Unveiling Portfolio Resilience: Harnessing Asymmetric Copulas for Dynamic Risk Assessment in the Knowledge Economy

Author

Listed:
  • Xia Li

    (Henan University)

Abstract

The dynamic landscape of modern financial analysis relies on the versatile instrument of copulas to unravel intricate interdependencies between variables. Value-at-risk (VAR) analysis, a crucial domain in risk assessment, seeks to navigate the complexities inherent in financial markets. Within portfolio management, risk minimization drives the selection of assets with diminished correlations. Copula models, particularly the symmetric Spearman ρ and Kendall τ, have traditionally underpinned VAR analysis. However, real-world financial assets exhibit asymmetric dependencies, necessitating a paradigm shift toward asymmetric copulas. This paper explores the potency of asymmetric copulas in VAR analysis for financial assets. Employing Monte Carlo simulations of copula functions, it juxtaposes nested Archimedean copulas with conventional symmetric counterparts. The study illuminates the role of asymmetric copulas in deciphering complex relationships inherent to financial variables, enriching the discourse on risk assessment and investment strategies. The paper’s journey traverses methodology, empirical findings, and introspective analysis, bridging theory and practice. It demonstrates that meticulous copula model selection and skillful Monte Carlo simulation execution are pivotal for accurate VAR analysis. The application of asymmetric copulas, particularly nested Archimedean copulas, effectively captures intricate dependencies among financial assets, spotlighting their potential in risk management. This study’s theoretical implications underscore the necessity of accurately modeling complex dependencies and tail events within portfolio risk management. Asymmetric copulas pave the way for dynamic models adaptable to evolving financial market dynamics. Managerially, the study guides risk managers in crafting tailored hedging and diversification strategies to enhance portfolio resilience. The study enhances risk management strategies by emphasizing sophisticated methodologies and nuanced risk assessment and contributes to stable financial outcomes.

Suggested Citation

  • Xia Li, 2024. "Unveiling Portfolio Resilience: Harnessing Asymmetric Copulas for Dynamic Risk Assessment in the Knowledge Economy," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 10200-10226, September.
  • Handle: RePEc:spr:jknowl:v:15:y:2024:i:3:d:10.1007_s13132-023-01503-6
    DOI: 10.1007/s13132-023-01503-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-023-01503-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-023-01503-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danai Likitratcharoen & Pan Chudasring & Chakrin Pinmanee & Karawan Wiwattanalamphong, 2023. "The Efficiency of Value-at-Risk Models during Extreme Market Stress in Cryptocurrencies," Sustainability, MDPI, vol. 15(5), pages 1-21, March.
    2. Charpentier, Arthur & Segers, Johan, 2009. "Tails of multivariate Archimedean copulas," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1521-1537, August.
    3. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    4. Albulescu, Claudiu Tiberiu & Tiwari, Aviral Kumar & Ji, Qiang, 2020. "Copula-based local dependence among energy, agriculture and metal commodities markets," Energy, Elsevier, vol. 202(C).
    5. Spyros Papathanasiou & Dimitris Kenourgios & Drosos Koutsokostas & Georgios Pergeris, 2023. "Can treasury inflation-protected securities safeguard investors from outward risk spillovers? A portfolio hedging strategy through the prism of COVID-19," Journal of Asset Management, Palgrave Macmillan, vol. 24(3), pages 198-211, May.
    6. Hofert, Marius & Maechler, Martin, 2011. "Nested Archimedean Copulas Meet R: The nacopula Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i09).
    7. Zhao, Linhai & Chau, Ka Yin & Tran, Trung Kien & Sadiq, Muhammad & Xuyen, Nguyen Thi My & Phan, Thi Thu Hien, 2022. "Enhancing green economic recovery through green bonds financing and energy efficiency investments," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 488-501.
    8. Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
    9. Linyu Cao & Ruili Sun & Tiefeng Ma & Conan Liu, 2023. "On Asymmetric Correlations and Their Applications in Financial Markets," JRFM, MDPI, vol. 16(3), pages 1-18, March.
    10. Okhrin, Yarema & Uddin, Gazi Salah & Yahya, Muhammad, 2023. "Nonlinear and asymmetric interconnectedness of crude oil with financial and commodity markets," Energy Economics, Elsevier, vol. 125(C).
    11. Tiwari, Aviral Kumar & Adewuyi, Adeolu O. & Albulescu, Claudiu T. & Wohar, Mark E., 2020. "Empirical evidence of extreme dependence and contagion risk between main cryptocurrencies," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    12. Aerambamoorthy Thavaneswaran & Alex Paseka & Julieta Frank, 2020. "Generalized value at risk forecasting," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 49(20), pages 4988-4995, October.
    13. Chakraborty, Sandip & Kakani, Ram Kumar & Sampath, Aravind, 2022. "Portfolio risk and stress across the business cycle," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    14. Christian Genest & Bruno Rémillard, 2004. "Test of independence and randomness based on the empirical copula process," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 13(2), pages 335-369, December.
    15. Ahmed Jeribi & Mohamed Fakhfekh, 2021. "Portfolio management and dependence structure between cryptocurrencies and traditional assets: evidence from FIEGARCH-EVT-Copula," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 224-239, May.
    16. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Talbi, Marwa & de Peretti, Christian & Belkacem, Lotfi, 2020. "Dynamics and causality in distribution between spot and future precious metals: A copula approach," Resources Policy, Elsevier, vol. 66(C).
    3. Hua, Lei, 2017. "On a bivariate copula with both upper and lower full-range tail dependence," Insurance: Mathematics and Economics, Elsevier, vol. 73(C), pages 94-104.
    4. Bianchi, Pascal & Elgui, Kevin & Portier, François, 2023. "Conditional independence testing via weighted partial copulas," Journal of Multivariate Analysis, Elsevier, vol. 193(C).
    5. Tan, Sook-Rei & Li, Changtai & Yeap, Xiu Wei, 2022. "A time-varying copula approach for constructing a daily financial systemic stress index," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    6. Shi, Peng & Zhao, Zifeng, 2024. "Enhanced pricing and management of bundled insurance risks with dependence-aware prediction using pair copula construction," Journal of Econometrics, Elsevier, vol. 240(1).
    7. Martin Waltz & Abhay Kumar Singh & Ostap Okhrin, 2022. "Vulnerability-CoVaR: investigating the crypto-market," Quantitative Finance, Taylor & Francis Journals, vol. 22(9), pages 1731-1745, September.
    8. Jiang, Kunliang & Ye, Wuyi, 2022. "Does the asymmetric dependence volatility affect risk spillovers between the crude oil market and BRICS stock markets?," Economic Modelling, Elsevier, vol. 117(C).
    9. Sancetta, A. & Nikanrova, A., 2005. "Forecasting and Prequential Validation for Time Varying Meta-Elliptical Distributions with a Study of Commodity Futures Prices," Cambridge Working Papers in Economics 0516, Faculty of Economics, University of Cambridge.
    10. Hanif, Waqas & Areola Hernandez, Jose & Troster, Victor & Kang, Sang Hoon & Yoon, Seong-Min, 2022. "Nonlinear dependence and spillovers between cryptocurrency and global/regional equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 74(C).
    11. Wanat, Stanisław & Papież, Monika & Śmiech, Sławomir, 2014. "Causality in distribution between European stock markets and commodity prices: Using independence test based on the empirical copula," MPRA Paper 57706, University Library of Munich, Germany.
    12. Paul R. Dewick & Shuangzhe Liu & Yonghui Liu & Tiefeng Ma, 2023. "Elliptical and Skew-Elliptical Regression Models and Their Applications to Financial Data Analytics," JRFM, MDPI, vol. 16(7), pages 1-20, June.
    13. Kumar, Satish & Tiwari, Aviral Kumar & Raheem, Ibrahim Dolapo & Hille, Erik, 2021. "Time-varying dependence structure between oil and agricultural commodity markets: A dependence-switching CoVaR copula approach," Resources Policy, Elsevier, vol. 72(C).
    14. Zhang, Ran & Czado, Claudia & Min, Aleksey, 2011. "Efficient maximum likelihood estimation of copula based meta t-distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(3), pages 1196-1214, March.
    15. Elie, Bouri & Naji, Jalkh & Dutta, Anupam & Uddin, Gazi Salah, 2019. "Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach," Energy, Elsevier, vol. 178(C), pages 544-553.
    16. Mangold, Benedikt, 2017. "A multivariate rank test of independence based on a multiparametric polynomial copula," FAU Discussion Papers in Economics 10/2015, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics, revised 2017.
    17. Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).
    18. Hua, Lei & Joe, Harry, 2011. "Tail order and intermediate tail dependence of multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 102(10), pages 1454-1471, November.
    19. Cui, Jinxin & Maghyereh, Aktham, 2024. "Unveiling interconnectedness: Exploring higher-order moments among energy, precious metals, industrial metals, and agricultural commodities in the context of geopolitical risks and systemic stress," Journal of Commodity Markets, Elsevier, vol. 33(C).
    20. Jone Ascorbebeitia & Eva Ferreira & Susan Orbe, 2022. "Testing conditional multivariate rank correlations: the effect of institutional quality on factors influencing competitiveness," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(4), pages 931-949, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:15:y:2024:i:3:d:10.1007_s13132-023-01503-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.