IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i8p1442-d225220.html
   My bibliography  Save this article

Addendum: Wang et al. A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases. Int. J. Environ. Res. Public Health , 2018, 15(8):1740; doi:10.3390/ijerph15081740

Author

Listed:
  • Xueli Wang

    (School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Moqin Zhou

    (School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China)

  • Jinzhu Jia

    (School of Public Health, Center of Statistical Science, Peking University, Beijing 100871, China)

  • Zhi Geng

    (School of Mathematical Sciences, Center of Statistical Science, Peking University, Beijing 100871, China)

  • Gexin Xiao

    (China National Center for Food Safety Risk Assessment, Beijing 100022, China)

Abstract

The authors wish to update the Abstract and Section 3 in their paper published in the International Journal of Environmental Research and Public Health (IJERPH) [...]

Suggested Citation

  • Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2019. "Addendum: Wang et al. A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases. Int. J. Environ. Res. Public Health , 2018, 15(8):1740; doi:10.3390/ijerph15081740," IJERPH, MDPI, vol. 16(8), pages 1-3, April.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1442-:d:225220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/8/1442/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/8/1442/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael Höhle & Matthias an der Heiden, 2014. "Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011," Biometrics, The International Biometric Society, vol. 70(4), pages 993-1002, December.
    2. Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2018. "A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases," IJERPH, MDPI, vol. 15(8), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Aghabazaz, Zeynab & Kazemi, Iraj, 2023. "Under-reported time-varying MINAR(1) process for modeling multivariate count series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
    3. Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held, 2022. "Session 3 of the RSS Special Topic Meeting on Covid‐19 Transmission: Replies to the discussion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 158-164, November.
    4. Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2018. "A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases," IJERPH, MDPI, vol. 15(8), pages 1-13, August.
    5. Oliver Stoner & Theo Economou, 2020. "Multivariate hierarchical frameworks for modeling delayed reporting in count data," Biometrics, The International Biometric Society, vol. 76(3), pages 789-798, September.
    6. Shaun R. Seaman & Pantelis Samartsidis & Meaghan Kall & Daniela De Angelis, 2022. "Nowcasting COVID‐19 deaths in England by age and region," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1266-1281, November.
    7. Oliver Stoner & Alba Halliday & Theo Economou, 2023. "Correcting delayed reporting of COVID‐19 using the generalized‐Dirichlet‐multinomial method," Biometrics, The International Biometric Society, vol. 79(3), pages 2537-2550, September.
    8. Angela Noufaily & Paddy Farrington & Paul Garthwaite & Doyo Gragn Enki & Nick Andrews & Andre Charlett, 2016. "Detection of Infectious Disease Outbreaks From Laboratory Data With Reporting Delays," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 488-499, April.
    9. Salmon, Maëlle & Schumacher, Dirk & Höhle, Michael, 2016. "Monitoring Count Time Series in R: Aberration Detection in Public Health Surveillance," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 70(i10).

    More about this item

    Keywords

    n/a;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:8:p:1442-:d:225220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.