IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i4p987-991.html
   My bibliography  Save this article

Forecasting with the age-period-cohort model and the extended chain-ladder model

Author

Listed:
  • D. Kuang
  • B. Nielsen
  • J. P. Nielsen

Abstract

We consider forecasting from age-period-cohort models, as well as from the extended chain-ladder model. The parameters of these models are known only to be identified up to linear trends. Forecasts from such models may therefore depend on arbitrary linear trends. A condition for invariant forecasts is proposed. A number of standard forecast models are analysed. Copyright 2008, Oxford University Press.

Suggested Citation

  • D. Kuang & B. Nielsen & J. P. Nielsen, 2008. "Forecasting with the age-period-cohort model and the extended chain-ladder model," Biometrika, Biometrika Trust, vol. 95(4), pages 987-991.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:987-991
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn038
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. D. Kuang & B. Nielsen & J. P. Nielsen, 2008. "Identification of the age-period-cohort model and the extended chain-ladder model," Biometrika, Biometrika Trust, vol. 95(4), pages 979-986.
    2. England, P.D. & Verrall, R.J., 2002. "Stochastic Claims Reserving in General Insurance," British Actuarial Journal, Cambridge University Press, vol. 8(3), pages 443-518, August.
    3. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Terence C. Cheng & Nattavudh Powdthavee & Andrew J. Oswald, 2017. "Longitudinal Evidence for a Midlife Nadir in Human Well‐being: Results from Four Data Sets," Economic Journal, Royal Economic Society, vol. 127(599), pages 126-142, February.
    3. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    4. D Kuang & Bent Nielsen & J P Nielsen, 2013. "The Geometric Chain-Ladder," Economics Papers 2013-W11, Economics Group, Nuffield College, University of Oxford.
    5. Zoë Fannon & B. Nielsen, 2018. "Age-period cohort models," Economics Papers 2018-W04, Economics Group, Nuffield College, University of Oxford.
    6. Weidong Ji & Na Xie & Daihai He & Weiming Wang & Hui Li & Kai Wang, 2019. "Age-Period-Cohort Analysis on the Time Trend of Hepatitis B Incidence in Four Prefectures of Southern Xinjiang, China from 2005 to 2017," IJERPH, MDPI, vol. 16(20), pages 1-17, October.
    7. María Dolores Martínez Miranda & Bent Nielsen & Jens Perch Nielsen, 2015. "Inference and forecasting in the age–period–cohort model with unknown exposure with an application to mesothelioma mortality," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 29-55, 01.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crevecoeur, Jonas & Antonio, Katrien & Verbelen, Roel, 2019. "Modeling the number of hidden events subject to observation delay," European Journal of Operational Research, Elsevier, vol. 277(3), pages 930-944.
    2. Bent Nielsen, 2014. "Deviance analysis of age-period-cohort models," Economics Papers 2014-W03, Economics Group, Nuffield College, University of Oxford.
    3. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Papers 1806.05939, arXiv.org.
    4. Liivika Tee & Meelis Käärik & Rauno Viin, 2017. "On Comparison of Stochastic Reserving Methods with Bootstrapping," Risks, MDPI, vol. 5(1), pages 1-21, January.
    5. Zoë Fannon & B. Nielsen, 2018. "Age-period cohort models," Economics Papers 2018-W04, Economics Group, Nuffield College, University of Oxford.
    6. Jonas Harnau, 2018. "Log-Normal or Over-Dispersed Poisson?," Risks, MDPI, vol. 6(3), pages 1-37, July.
    7. Alex Isakson & Simone Krummaker & María Dolores Martínez-Miranda & Ben Rickayzen, 2021. "Calendar Effect and In-Sample Forecasting Applied to Mesothelioma Mortality Data," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
    8. Jonas Harnau, 2018. "Misspecification Tests for Log-Normal and Over-Dispersed Poisson Chain-Ladder Models," Risks, MDPI, vol. 6(2), pages 1-25, March.
    9. D. Kuang & B. Nielsen, 2018. "Generalized Log-Normal Chain-Ladder," Economics Papers 2018-W02, Economics Group, Nuffield College, University of Oxford.
    10. Avanzi, Benjamin & Taylor, Greg & Vu, Phuong Anh & Wong, Bernard, 2020. "A multivariate evolutionary generalised linear model framework with adaptive estimation for claims reserving," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 50-71.
    11. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    12. Vitek, Francis, 2006. "Measuring the Stance of Monetary Policy in a Small Open Economy: A Dynamic Stochastic General Equilibrium Approach," MPRA Paper 802, University Library of Munich, Germany.
    13. Luis Fernando Melo Velandia & Martha Alicia Misas Arango, 2004. "Modelos Estructurales de Inflación en Colombia: Estimación a través de Mínimos Cuadrados Flexibles," Borradores de Economia 3244, Banco de la Republica.
    14. de Andres-Sanchez, Jorge, 2007. "Claim reserving with fuzzy regression and Taylor's geometric separation method," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 145-163, January.
    15. Haldrup, Niels & Nielsen, Morten Orregaard, 2006. "A regime switching long memory model for electricity prices," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 349-376.
    16. Lars Hougaard Hansen & Bent Nielsen & Jens Perch Nielsen, 2004. "Two sided analysis of variance with a latent time series," Economics Papers 2004-W25, Economics Group, Nuffield College, University of Oxford.
    17. COSTA, JUAN IGNACIO BACCINO & DE ARMAS, GONZALO & Álvarez-Vaz, Ramón Dr., 2022. "Estudio De Algunos Métodos De Reservas Técnicas En Condiciones De Incertidumbre Para Seguros De No Vida (Study Of Some Methods Of Technical Reserves Under Conditions Of Uncertainty For Non-Life Insura," OSF Preprints 3pjr9, Center for Open Science.
    18. Banerjee, Anindya & Marcellino, Massimiliano, 2006. "Are there any reliable leading indicators for US inflation and GDP growth?," International Journal of Forecasting, Elsevier, vol. 22(1), pages 137-151.
    19. J. James Reade & Ulrich Volz, 2009. "Too Much to Lose, or More to Gain? Should Sweden Join the Euro?," Economics Series Working Papers 442, University of Oxford, Department of Economics.
    20. Michael Artis & Anindya Banerjee & Massimiliano Marcellino, "undated". "Factor forecasts for the UK," Working Papers 203, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:987-991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.