A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Eunjoo Yang & Hyun Woo Park & Yeon Hwa Choi & Jusim Kim & Lkhagvadorj Munkhdalai & Ibrahim Musa & Keun Ho Ryu, 2018. "A Simulation-Based Study on the Comparison of Statistical and Time Series Forecasting Methods for Early Detection of Infectious Disease Outbreaks," IJERPH, MDPI, vol. 15(5), pages 1-18, May.
- Michael Höhle & Matthias an der Heiden, 2014. "Bayesian nowcasting during the STEC O104:H4 outbreak in Germany, 2011," Biometrics, The International Biometric Society, vol. 70(4), pages 993-1002, December.
- James Kaufman & Justin Lessler & April Harry & Stefan Edlund & Kun Hu & Judith Douglas & Christian Thoens & Bernd Appel & Annemarie Käsbohrer & Matthias Filter, 2014. "A Likelihood-Based Approach to Identifying Contaminated Food Products Using Sales Data: Performance and Challenges," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-10, July.
- Claudia Czado & Tilmann Gneiting & Leonhard Held, 2009. "Predictive Model Assessment for Count Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1254-1261, December.
- Lin Wang & Joseph T. Wu, 2018. "Characterizing the dynamics underlying global spread of epidemics," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2019. "Addendum: Wang et al. A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases. Int. J. Environ. Res. Public Health , 2018, 15(8):1740; doi:10.3390/ijerph15081740," IJERPH, MDPI, vol. 16(8), pages 1-3, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xueli Wang & Moqin Zhou & Jinzhu Jia & Zhi Geng & Gexin Xiao, 2019. "Addendum: Wang et al. A Bayesian Approach to Real-Time Monitoring and Forecasting of Chinese Foodborne Diseases. Int. J. Environ. Res. Public Health , 2018, 15(8):1740; doi:10.3390/ijerph15081740," IJERPH, MDPI, vol. 16(8), pages 1-3, April.
- Vasiliki Christou & Konstantinos Fokianos, 2014. "Quasi-Likelihood Inference For Negative Binomial Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 55-78, January.
- James Mitchell & Martin Weale, 2023.
"Censored density forecasts: Production and evaluation,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 714-734, August.
- James Mitchell & Martin Weale, 2021. "Censored Density Forecasts: Production and Evaluation," Working Papers 21-12R, Federal Reserve Bank of Cleveland, revised 16 Aug 2022.
- Reese Richardson & Emile Jorgensen & Philip Arevalo & Tobias M. Holden & Katelyn M. Gostic & Massimo Pacilli & Isaac Ghinai & Shannon Lightner & Sarah Cobey & Jaline Gerardin, 2022. "Tracking changes in SARS-CoV-2 transmission with a novel outpatient sentinel surveillance system in Chicago, USA," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
- Lu, Ye & Suthaharan, Neyavan, 2023. "Electricity price spike clustering: A zero-inflated GARX approach," Energy Economics, Elsevier, vol. 124(C).
- Fokianos, Konstantinos & Fried, Roland & Kharin, Yuriy & Voloshko, Valeriy, 2022. "Statistical analysis of multivariate discrete-valued time series," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Chen, Ning & Zhu, Xuzhen & Chen, Yanyan, 2019. "Information spreading on complex networks with general group distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 671-676.
- Ashish Gupta & Amit Deokar & Lakshmi Iyer & Ramesh Sharda & Dave Schrader, 2018. "Big Data & Analytics for Societal Impact: Recent Research and Trends," Information Systems Frontiers, Springer, vol. 20(2), pages 185-194, April.
- Zou, Yang & Xiong, Zhongyang & Zhang, Pu & Wang, Wei, 2018. "Social contagions on multiplex networks with different reliability," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 728-735.
- Aghabazaz, Zeynab & Kazemi, Iraj, 2023. "Under-reported time-varying MINAR(1) process for modeling multivariate count series," Computational Statistics & Data Analysis, Elsevier, vol. 188(C).
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Jun Cai & Bo Xu & Karen Kie Yan Chan & Xueying Zhang & Bing Zhang & Ziyue Chen & Bing Xu, 2019. "Roles of Different Transport Modes in the Spatial Spread of the 2009 Influenza A(H1N1) Pandemic in Mainland China," IJERPH, MDPI, vol. 16(2), pages 1-15, January.
- Diebold, Francis X. & Shin, Minchul & Zhang, Boyuan, 2023.
"On the aggregation of probability assessments: Regularized mixtures of predictive densities for Eurozone inflation and real interest rates,"
Journal of Econometrics, Elsevier, vol. 237(2).
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2020. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Papers 2012.11649, arXiv.org, revised Jun 2022.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," Working Papers 21-06, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2022. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone Inflation and Real Interest Rates," NBER Working Papers 29635, National Bureau of Economic Research, Inc.
- Francis X. Diebold & Minchul Shin & Boyuan Zhang, 2021. "On the Aggregation of Probability Assessments: Regularized Mixtures of Predictive Densities for Eurozone In?ation and Real Interest Rates," PIER Working Paper Archive 21-002, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Nicholas G. Reich & Justin Lessler & Krzysztof Sakrejda & Stephen A. Lauer & Sopon Iamsirithaworn & Derek A. T. Cummings, 2016. "Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 285-292, July.
- Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
- Antonio Bracale & Pasquale De Falco, 2015. "An Advanced Bayesian Method for Short-Term Probabilistic Forecasting of the Generation of Wind Power," Energies, MDPI, vol. 8(9), pages 1-22, September.
- Maria Bekker‐Nielsen Dunbar & Felix Hofmann & Leonhard Held, 2022. "Session 3 of the RSS Special Topic Meeting on Covid‐19 Transmission: Replies to the discussion," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 158-164, November.
- David Harris & Gael M. Martin & Indeewara Perera & Don S. Poskitt, 2017. "Construction and visualization of optimal confidence sets for frequentist distributional forecasts," Monash Econometrics and Business Statistics Working Papers 9/17, Monash University, Department of Econometrics and Business Statistics.
- Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
- Oliver Stoner & Theo Economou, 2020. "Multivariate hierarchical frameworks for modeling delayed reporting in count data," Biometrics, The International Biometric Society, vol. 76(3), pages 789-798, September.
More about this item
Keywords
Bayesian hierarchical model; foodborne disease; nowcasting; reporting delay; right truncation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:8:p:1740-:d:163570. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.