IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v65y2009i4p1194-1202.html
   My bibliography  Save this article

Flexible Regression Model Selection for Survival Probabilities: With Application to AIDS

Author

Listed:
  • A. Gregory DiRienzo

Abstract

No abstract is available for this item.

Suggested Citation

  • A. Gregory DiRienzo, 2009. "Flexible Regression Model Selection for Survival Probabilities: With Application to AIDS," Biometrics, The International Biometric Society, vol. 65(4), pages 1194-1202, December.
  • Handle: RePEc:bla:biomet:v:65:y:2009:i:4:p:1194-1202
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.1541-0420.2008.01178.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu Zheng & Tianxi Cai, 2017. "Augmented estimation for t‐year survival with censored regression models," Biometrics, The International Biometric Society, vol. 73(4), pages 1169-1178, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Zheng & Tianxi Cai, 2017. "Augmented estimation for t‐year survival with censored regression models," Biometrics, The International Biometric Society, vol. 73(4), pages 1169-1178, December.
    2. Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
    3. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    4. Paul Blanche & Jean‐François Dartigues & Jérémie Riou, 2022. "A closed max‐t test for multiple comparisons of areas under the ROC curve," Biometrics, The International Biometric Society, vol. 78(1), pages 352-363, March.
    5. Mingzhu Liu & Chirag Nagpal & Artur Dubrawski, 2024. "Deep Survival Models Can Improve Long-Term Mortality Risk Estimates from Chest Radiographs," Forecasting, MDPI, vol. 6(2), pages 1-14, May.
    6. Dendramis, Y. & Tzavalis, E. & Varthalitis, P. & Athanasiou, E., 2020. "Predicting default risk under asymmetric binary link functions," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1039-1056.
    7. Ruosha Li & Limin Peng, 2017. "Assessing quantile prediction with censored quantile regression models," Biometrics, The International Biometric Society, vol. 73(2), pages 517-528, June.
    8. Hajime Uno & Tianxi Cai & Lu Tian & L. J. Wei, 2011. "Graphical Procedures for Evaluating Overall and Subject-Specific Incremental Values from New Predictors with Censored Event Time Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1389-1396, December.
    9. Tianxi Cai & Thomas A Gerds & Yingye Zheng & Jinbo Chen, 2011. "Robust Prediction of t-Year Survival with Data from Multiple Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 436-444, June.
    10. Shu Jiang & Jiguo Cao & Bernard Rosner & Graham A. Colditz, 2023. "Supervised two‐dimensional functional principal component analysis with time‐to‐event outcomes and mammogram imaging data," Biometrics, The International Biometric Society, vol. 79(2), pages 1359-1369, June.
    11. Rebecca Payne & Ming Yang & Yingye Zheng & Majken K. Jensen & Tianxi Cai, 2016. "Robust risk prediction with biomarkers under two‐phase stratified cohort design," Biometrics, The International Biometric Society, vol. 72(4), pages 1037-1045, December.
    12. Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.
    13. Ruosha Li & Jing Ning & Ziding Feng, 2022. "Estimation and inference of predictive discrimination for survival outcome risk prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 219-240, April.
    14. He Kevin & Zhou Xiang & Jiang Hui & Wen Xiaoquan & Li Yi, 2018. "False discovery control for penalized variable selections with high-dimensional covariates," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(6), pages 1-11, December.
    15. Susana Díaz-Coto & Pablo Martínez-Camblor & Sonia Pérez-Fernández, 2020. "smoothROCtime: an R package for time-dependent ROC curve estimation," Computational Statistics, Springer, vol. 35(3), pages 1231-1251, September.
    16. Cheng Zheng & Yingye Zheng, 2019. "Calibrating Variations in Biomarker Measures for Improving Prediction with Time-to-event Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 477-503, December.
    17. Denis Agniel & Katherine P. Liao & Tianxi Cai, 2016. "Estimation and testing for multiple regulation of multivariate mixed outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1194-1205, December.
    18. Glenn Heller, 2021. "The added value of new covariates to the brier score in cox survival models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 1-14, January.
    19. Stephanie Chan & Xuan Wang & Ina Jazić & Sarah Peskoe & Yingye Zheng & Tianxi Cai, 2021. "Developing and evaluating risk prediction models with panel current status data," Biometrics, The International Biometric Society, vol. 77(2), pages 599-609, June.
    20. Giulia Barbati & Alessio Farcomeni, 2018. "Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomyopathy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 545-557, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:65:y:2009:i:4:p:1194-1202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.