IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v29y2023i2d10.1007_s10985-022-09564-6.html
   My bibliography  Save this article

On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects

Author

Listed:
  • Paul Frédéric Blanche

    (University of Copenhagen
    Copenhagen University Hospital–Herlev and Gentofte)

  • Anders Holt

    (Copenhagen University Hospital–Herlev and Gentofte)

  • Thomas Scheike

    (University of Copenhagen)

Abstract

Simple logistic regression can be adapted to deal with right-censoring by inverse probability of censoring weighting (IPCW). We here compare two such IPCW approaches, one based on weighting the outcome, the other based on weighting the estimating equations. We study the large sample properties of the two approaches and show that which of the two weighting methods is the most efficient depends on the censoring distribution. We show by theoretical computations that the methods can be surprisingly different in realistic settings. We further show how to use the two weighting approaches for logistic regression to estimate causal treatment effects, for both observational studies and randomized clinical trials (RCT). Several estimators for observational studies are compared and we present an application to registry data. We also revisit interesting robustness properties of logistic regression in the context of RCTs, with a particular focus on the IPCW weighting. We find that these robustness properties still hold when the censoring weights are correctly specified, but not necessarily otherwise.

Suggested Citation

  • Paul Frédéric Blanche & Anders Holt & Thomas Scheike, 2023. "On logistic regression with right censored data, with or without competing risks, and its use for estimating treatment effects," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 441-482, April.
  • Handle: RePEc:spr:lifeda:v:29:y:2023:i:2:d:10.1007_s10985-022-09564-6
    DOI: 10.1007/s10985-022-09564-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-022-09564-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-022-09564-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaomin Lu & Anastasios A. Tsiatis, 2008. "Improving the efficiency of the log-rank test using auxiliary covariates," Biometrika, Biometrika Trust, vol. 95(3), pages 679-694.
    2. A. G. DiRienzo & S. W. Lagakos, 2001. "Effects of model misspecification on tests of no randomized treatment effect arising from Cox’s proportional hazards model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 745-757.
    3. Yingye Zheng & Tianxi Cai & Ziding Feng, 2006. "Application of the Time-Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers," Biometrics, The International Biometric Society, vol. 62(1), pages 279-287, March.
    4. Min Zhang & Anastasios A. Tsiatis & Marie Davidian, 2008. "Improving Efficiency of Inferences in Randomized Clinical Trials Using Auxiliary Covariates," Biometrics, The International Biometric Society, vol. 64(3), pages 707-715, September.
    5. Judith J. Lok & Shu Yang & Brian Sharkey & Michael D. Hughes, 2018. "Estimation of the cumulative incidence function under multiple dependent and independent censoring mechanisms," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(2), pages 201-223, April.
    6. van der Laan Mark J. & Rubin Daniel, 2006. "Targeted Maximum Likelihood Learning," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-40, December.
    7. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    8. Thomas H. Scheike & Mei-Jie Zhang & Thomas A. Gerds, 2008. "Predicting cumulative incidence probability by direct binomial regression," Biometrika, Biometrika Trust, vol. 95(1), pages 205-220.
    9. S. Vansteelandt & T. Martinussen & E. J. Tchetgen Tchetgen, 2014. "On adjustment for auxiliary covariates in additive hazard models for the analysis of randomized experiments," Biometrika, Biometrika Trust, vol. 101(1), pages 237-244.
    10. Stefanski L. A. & Boos D. D., 2002. "The Calculus of M-Estimation," The American Statistician, American Statistical Association, vol. 56, pages 29-38, February.
    11. Andrea Rotnitzky & Andres Farall & Andrea Bergesio & Daniel Scharfstein, 2007. "Analysis of failure time data under competing censoring mechanisms," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 307-327, June.
    12. Heejung Bang & James M. Robins, 2005. "Doubly Robust Estimation in Missing Data and Causal Inference Models," Biometrics, The International Biometric Society, vol. 61(4), pages 962-973, December.
    13. Torben Martinussen & Stijn Vansteelandt & Per Kragh Andersen, 2020. "Subtleties in the interpretation of hazard contrasts," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 833-855, October.
    14. Jane Paik Kim, 2013. "A Note on Using Regression Models to Analyze Randomized Trials: Asymptotically Valid Hypothesis Tests Despite Incorrectly Specified Models," Biometrics, The International Biometric Society, vol. 69(1), pages 282-289, March.
    15. Michael J. Martens & Brent R. Logan, 2020. "Group sequential tests for treatment effect on survival and cumulative incidence at a fixed time point," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 603-623, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iván Díaz & Elizabeth Colantuoni & Daniel F. Hanley & Michael Rosenblum, 2019. "Improved precision in the analysis of randomized trials with survival outcomes, without assuming proportional hazards," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 439-468, July.
    2. Stephens Alisa & Tchetgen Tchetgen Eric & De Gruttola Victor, 2014. "Locally Efficient Estimation of Marginal Treatment Effects When Outcomes Are Correlated: Is the Prize Worth the Chase?," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 59-75, May.
    3. Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
    4. Antonelli Joseph & Cefalu Matthew, 2020. "Averaging causal estimators in high dimensions," Journal of Causal Inference, De Gruyter, vol. 8(1), pages 92-107, January.
    5. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    6. Zhiwei Zhang & Zhen Chen & James F. Troendle & Jun Zhang, 2012. "Causal Inference on Quantiles with an Obstetric Application," Biometrics, The International Biometric Society, vol. 68(3), pages 697-706, September.
    7. Layla Parast & Beth Ann Griffin, 2017. "Landmark estimation of survival and treatment effects in observational studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(2), pages 161-182, April.
    8. Mireille E. Schnitzer & Erica E.M. Moodie & Mark J. van der Laan & Robert W. Platt & Marina B. Klein, 2014. "Modeling the impact of hepatitis C viral clearance on end-stage liver disease in an HIV co-infected cohort with targeted maximum likelihood estimation," Biometrics, The International Biometric Society, vol. 70(1), pages 144-152, March.
    9. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    10. Susan Gruber & Mark J. van der Laan, 2013. "An Application of Targeted Maximum Likelihood Estimation to the Meta-Analysis of Safety Data," Biometrics, The International Biometric Society, vol. 69(1), pages 254-262, March.
    11. Wang, Qihua & Su, Miaomiao & Wang, Ruoyu, 2021. "A beyond multiple robust approach for missing response problem," Computational Statistics & Data Analysis, Elsevier, vol. 155(C).
    12. Shu Yang, 2022. "Semiparametric estimation of structural nested mean models with irregularly spaced longitudinal observations," Biometrics, The International Biometric Society, vol. 78(3), pages 937-949, September.
    13. Cousineau, Martin & Verter, Vedat & Murphy, Susan A. & Pineau, Joelle, 2023. "Estimating causal effects with optimization-based methods: A review and empirical comparison," European Journal of Operational Research, Elsevier, vol. 304(2), pages 367-380.
    14. I Ciocănea-Teodorescu & E E Gabriel & A Sjölander, 2022. "Sensitivity analysis for unmeasured confounding in the estimation of marginal causal effects [Doubly robust estimation in missing data and causal inference models]," Biometrika, Biometrika Trust, vol. 109(4), pages 1101-1116.
    15. Michael J. Martens & Brent R. Logan, 2020. "Group sequential tests for treatment effect on survival and cumulative incidence at a fixed time point," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(3), pages 603-623, July.
    16. Torben Martinussen & Mats Julius Stensrud, 2023. "Estimation of separable direct and indirect effects in continuous time," Biometrics, The International Biometric Society, vol. 79(1), pages 127-139, March.
    17. Yuan, Ao & Zheng, Yanxun & Huang, Peng & Tan, Ming T., 2016. "A nonparametric test for the evaluation of group sequential clinical trials with covariate information," Journal of Multivariate Analysis, Elsevier, vol. 152(C), pages 82-99.
    18. David Cheng & Ashwin N. Ananthakrishnan & Tianxi Cai, 2021. "Robust and efficient semi‐supervised estimation of average treatment effects with application to electronic health records data," Biometrics, The International Biometric Society, vol. 77(2), pages 413-423, June.
    19. repec:bla:istatr:v:83:y:2015:i:3:p:449-471 is not listed on IDEAS
    20. David Benkeser & Keith Horvath & Cathy J. Reback & Joshua Rusow & Michael Hudgens, 2020. "Design and Analysis Considerations for a Sequentially Randomized HIV Prevention Trial," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(3), pages 446-467, December.
    21. Jianxuan Liu & Yanyuan Ma & Lan Wang, 2018. "An alternative robust estimator of average treatment effect in causal inference," Biometrics, The International Biometric Society, vol. 74(3), pages 910-923, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:29:y:2023:i:2:d:10.1007_s10985-022-09564-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.