IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v28y2022i2d10.1007_s10985-022-09545-9.html
   My bibliography  Save this article

Estimation and inference of predictive discrimination for survival outcome risk prediction models

Author

Listed:
  • Ruosha Li

    (Department of Biostatistics and Data Science, The University of Texas Health Science Center at Houston)

  • Jing Ning

    (Department of Biostatistics, The University of Texas MD Anderson Cancer Center)

  • Ziding Feng

    (Division of Public Health Sciences, Fred Hutchison Cancer Research Center)

Abstract

Accurate risk prediction has been the central goal in many studies of survival outcomes. In the presence of multiple risk factors, a censored regression model can be employed to estimate a risk prediction rule. Before the prediction tool can be popularized for practical use, it is crucial to rigorously assess its prediction performance. In our motivating example, researchers are interested in developing and validating a risk prediction tool to identify future lung cancer cases by integrating demographic information, disease characteristics and smoking-related data. Considering the long latency period of cancer, it is desirable for a prediction tool to achieve discriminative performance that does not weaken over time. We propose estimation and inferential procedures to comprehensively assess both the overall predictive discrimination and the temporal pattern of an estimated prediction rule. The proposed methods readily accommodate commonly used censored regression models, including the Cox proportional hazards model and the accelerated failure time model. The estimators are consistent and asymptotically normal, and reliable variance estimators are also developed. The proposed methods offer an informative tool for inferring time-dependent predictive discrimination, as well as for comparing the discrimination performance between candidate models. Applications of the proposed methods demonstrate enduring performance of the risk prediction tool in the PLCO study and detected decaying performance in a study of liver disease.

Suggested Citation

  • Ruosha Li & Jing Ning & Ziding Feng, 2022. "Estimation and inference of predictive discrimination for survival outcome risk prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 219-240, April.
  • Handle: RePEc:spr:lifeda:v:28:y:2022:i:2:d:10.1007_s10985-022-09545-9
    DOI: 10.1007/s10985-022-09545-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-022-09545-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-022-09545-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Takaya Saito & Marc Rehmsmeier, 2015. "The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-21, March.
    2. Mithat Gonen & Glenn Heller, 2005. "Concordance probability and discriminatory power in proportional hazards regression," Biometrika, Biometrika Trust, vol. 92(4), pages 965-970, December.
    3. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    4. Lu Tian & Tianxi Cai & Els Goetghebeur & L. J. Wei, 2007. "Model evaluation based on the sampling distribution of estimated absolute prediction error," Biometrika, Biometrika Trust, vol. 94(2), pages 297-311.
    5. Patrick J. Heagerty & Yingye Zheng, 2005. "Survival Model Predictive Accuracy and ROC Curves," Biometrics, The International Biometric Society, vol. 61(1), pages 92-105, March.
    6. Li Chen & D. Y. Lin & Donglin Zeng, 2012. "Predictive accuracy of covariates for event times," Biometrika, Biometrika Trust, vol. 99(3), pages 615-630.
    7. Weining Shen & Jing Ning & Ying Yuan, 2015. "A direct method to evaluate the time-dependent predictive accuracy for biomarkers," Biometrics, The International Biometric Society, vol. 71(2), pages 439-449, June.
    8. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jing Zhang & Jing Ning & Ruosha Li, 2023. "Evaluating Dynamic Discrimination Performance of Risk Prediction Models for Survival Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 353-371, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.
    2. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    3. Susana Díaz-Coto & Pablo Martínez-Camblor & Sonia Pérez-Fernández, 2020. "smoothROCtime: an R package for time-dependent ROC curve estimation," Computational Statistics, Springer, vol. 35(3), pages 1231-1251, September.
    4. Wolf, Petra & Schmidt, Georg & Ulm, Kurt, 2011. "The use of ROC for defining the validity of the prognostic index in censored data," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 783-791, July.
    5. Sehee Kim & Douglas E. Schaubel & Keith P. McCullough, 2018. "A C†index for recurrent event data: Application to hospitalizations among dialysis patients," Biometrics, The International Biometric Society, vol. 74(2), pages 734-743, June.
    6. Liu Xinhua & Jin Zhezhen, 2009. "A Non-Parametric Approach to Scale Reduction for Uni-Dimensional Screening Scales," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-22, January.
    7. Weining Shen & Jing Ning & Ying Yuan, 2015. "A direct method to evaluate the time-dependent predictive accuracy for biomarkers," Biometrics, The International Biometric Society, vol. 71(2), pages 439-449, June.
    8. P. Saha & P. J. Heagerty, 2010. "Time-Dependent Predictive Accuracy in the Presence of Competing Risks," Biometrics, The International Biometric Society, vol. 66(4), pages 999-1011, December.
    9. Janez Stare & Maja Pohar Perme & Robin Henderson, 2011. "A Measure of Explained Variation for Event History Data," Biometrics, The International Biometric Society, vol. 67(3), pages 750-759, September.
    10. Yingye Zheng & Tianxi Cai & Ziding Feng, 2006. "Application of the Time-Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers," Biometrics, The International Biometric Society, vol. 62(1), pages 279-287, March.
    11. C. Jason Liang & Patrick J. Heagerty, 2017. "Rejoinder to discussions on: A risk-based measure of time-varying prognostic discrimination for survival models," Biometrics, The International Biometric Society, vol. 73(3), pages 745-748, September.
    12. C. Jason Liang & Patrick J. Heagerty, 2017. "A risk-based measure of time-varying prognostic discrimination for survival models," Biometrics, The International Biometric Society, vol. 73(3), pages 725-734, September.
    13. Yingye Zheng & Patrick J. Heagerty, 2007. "Prospective Accuracy for Longitudinal Markers," Biometrics, The International Biometric Society, vol. 63(2), pages 332-341, June.
    14. Hajime Uno & Tianxi Cai & Lu Tian & L. J. Wei, 2011. "Graphical Procedures for Evaluating Overall and Subject-Specific Incremental Values from New Predictors with Censored Event Time Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1389-1396, December.
    15. Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
    16. Tianxi Cai & Thomas A Gerds & Yingye Zheng & Jinbo Chen, 2011. "Robust Prediction of t-Year Survival with Data from Multiple Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 436-444, June.
    17. Yingye Zheng & Tianxi Cai & Yuying Jin & Ziding Feng, 2012. "Evaluating Prognostic Accuracy of Biomarkers under Competing Risk," Biometrics, The International Biometric Society, vol. 68(2), pages 388-396, June.
    18. van Geloven, N. & He, Y. & Zwinderman, A.H. & Putter, H., 2021. "Estimation of incident dynamic AUC in practice," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    19. Richard Chamboko & Jorge Miguel Bravo, 2020. "A Multi-State Approach to Modelling Intermediate Events and Multiple Mortgage Loan Outcomes," Risks, MDPI, vol. 8(2), pages 1-29, June.
    20. Sean M. Devlin & Mithat Gönen & Glenn Heller, 2020. "Measuring the temporal prognostic utility of a baseline risk score," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 856-871, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:28:y:2022:i:2:d:10.1007_s10985-022-09545-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.