IDEAS home Printed from https://ideas.repec.org/a/spr/lifeda/v27y2021i1d10.1007_s10985-020-09509-x.html
   My bibliography  Save this article

The added value of new covariates to the brier score in cox survival models

Author

Listed:
  • Glenn Heller

    (Memorial Sloan Kettering)

Abstract

Calibration is an important measure of the predictive accuracy for a prognostic risk model. A widely used measure of calibration when the outcome is survival time is the expected Brier score. In this paper, methodology is developed to accurately estimate the difference in expected Brier scores derived from nested survival models and to compute an accompanying variance estimate of this difference. The methodology is applicable to time invariant and time-varying coefficient Cox survival models. The nested survival model approach is often applied to the scenario where the full model consists of conventional and new covariates and the subset model contains the conventional covariates alone. A complicating factor in the methodologic development is that the Cox model specification cannot, in general, be simultaneously satisfied for nested models. The problem has been resolved by projecting the properly specified full survival model onto the lower dimensional space of conventional markers alone. Simulations are performed to examine the method’s finite sample properties and a prostate cancer data set is used to illustrate its application.

Suggested Citation

  • Glenn Heller, 2021. "The added value of new covariates to the brier score in cox survival models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 1-14, January.
  • Handle: RePEc:spr:lifeda:v:27:y:2021:i:1:d:10.1007_s10985-020-09509-x
    DOI: 10.1007/s10985-020-09509-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10985-020-09509-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10985-020-09509-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    2. Lu Tian & Tianxi Cai & Els Goetghebeur & L. J. Wei, 2007. "Model evaluation based on the sampling distribution of estimated absolute prediction error," Biometrika, Biometrika Trust, vol. 94(2), pages 297-311.
    3. Lu Tian & David Zucker & L.J. Wei, 2005. "On the Cox Model With Time-Varying Regression Coefficients," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 172-183, March.
    4. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    5. Thomas A. Gerds & Martin Schumacher, 2007. "Efron-Type Measures of Prediction Error for Survival Analysis," Biometrics, The International Biometric Society, vol. 63(4), pages 1283-1287, December.
    6. Thomas J. DiCiccio & Anna Clara Monti & G. Alastair Young, 2006. "Variance stabilization for a scalar parameter," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(2), pages 281-303, April.
    7. Limin Peng & Yijian Huang, 2007. "Survival analysis with temporal covariate effects," Biometrika, Biometrika Trust, vol. 94(3), pages 719-733.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christine Porzelius & Martin Schumacher & Harald Binder, 2011. "The benefit of data-based model complexity selection via prediction error curves in time-to-event data," Computational Statistics, Springer, vol. 26(2), pages 293-302, June.
    2. Tianxi Cai & Thomas A Gerds & Yingye Zheng & Jinbo Chen, 2011. "Robust Prediction of t-Year Survival with Data from Multiple Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 436-444, June.
    3. Naseri, Masoud & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 66-82.
    4. Xiaomeng Qi & Zhangsheng Yu, 2023. "Kernel regression for cause-specific hazard models with time-dependent coefficients," Computational Statistics, Springer, vol. 38(1), pages 263-283, March.
    5. Ruosha Li & Jing Ning & Ziding Feng, 2022. "Estimation and inference of predictive discrimination for survival outcome risk prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 219-240, April.
    6. Möst Lisa & Hothorn Torsten, 2015. "Conditional Transformation Models for Survivor Function Estimation," The International Journal of Biostatistics, De Gruyter, vol. 11(1), pages 23-50, May.
    7. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    8. Jessica Gronsbell & Molei Liu & Lu Tian & Tianxi Cai, 2022. "Efficient evaluation of prediction rules in semi‐supervised settings under stratified sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1353-1391, September.
    9. Osman, Muhtarjan & Ghosh, Sujit K., 2012. "Nonparametric regression models for right-censored data using Bernstein polynomials," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 559-573.
    10. Guoqing Diao & Donglin Zeng & Song Yang, 2013. "Efficient Semiparametric Estimation of Short-Term and Long-Term Hazard Ratios with Right-Censored Data," Biometrics, The International Biometric Society, vol. 69(4), pages 840-849, December.
    11. Guoqing Diao & Anand N. Vidyashankar & Sarah Zohar & Sandrine Katsahian, 2021. "Competing Risks Model with Short-Term and Long-Term Covariate Effects for Cancer Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 13(1), pages 142-159, April.
    12. Yi Li & Lu Tian & Lee-Jen Wei, 2011. "Estimating Subject-Specific Dependent Competing Risk Profile with Censored Event Time Observations," Biometrics, The International Biometric Society, vol. 67(2), pages 427-435, June.
    13. Yingye Zheng & Tianxi Cai & Janet L. Stanford & Ziding Feng, 2010. "Semiparametric Models of Time-Dependent Predictive Values of Prognostic Biomarkers," Biometrics, The International Biometric Society, vol. 66(1), pages 50-60, March.
    14. Azar, Pablo D. & Micali, Silvio, 2018. "Computational principal agent problems," Theoretical Economics, Econometric Society, vol. 13(2), May.
    15. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    16. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    17. Domenico Piccolo & Rosaria Simone, 2019. "The class of cub models: statistical foundations, inferential issues and empirical evidence," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(3), pages 389-435, September.
    18. Finn Lindgren, 2015. "Comments on: Comparing and selecting spatial predictors using local criteria," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(1), pages 35-44, March.
    19. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    20. Laura Liu & Hyungsik Roger Moon & Frank Schorfheide, 2023. "Forecasting with a panel Tobit model," Quantitative Economics, Econometric Society, vol. 14(1), pages 117-159, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lifeda:v:27:y:2021:i:1:d:10.1007_s10985-020-09509-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.