IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v73y2017i4p1169-1178.html
   My bibliography  Save this article

Augmented estimation for t‐year survival with censored regression models

Author

Listed:
  • Yu Zheng
  • Tianxi Cai

Abstract

Reliable and accurate risk prediction is fundamental for successful management of clinical conditions. Estimating comprehensive risk prediction models precisely, however, is a difficult task, especially when the outcome of interest is time to a rare event and the number of candidate predictors, p, is not very small. Another challenge in developing accurate risk models arises from potential model misspecification. Time‐specific generalized linear models estimated with inverse censoring probability weighting are robust to model misspecification, but may be inefficient in the rare event setting. To improve the efficiency of such robust estimation procedures, various augmentation methods have been proposed in the literature. These procedures can also leverage auxiliary variables such as intermediate outcomes that are predictive of event risk. However, most existing methods do not perform well in the rare event setting, especially when p is not small. In this article, we propose a two‐step, imputation‐based augmentation procedure that can improve estimation efficiency and that is robust to model misspecification. We also develop regularized augmentation procedures for settings where p is not small, along with procedures to improve the estimation of individualized treatment effect in risk reduction. Numerical studies suggest that our proposed methods substantially outperform existing methods in efficiency gains. The proposed methods are applied to an AIDS clinical trial for treating HIV‐infected patients.

Suggested Citation

  • Yu Zheng & Tianxi Cai, 2017. "Augmented estimation for t‐year survival with censored regression models," Biometrics, The International Biometric Society, vol. 73(4), pages 1169-1178, December.
  • Handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1169-1178
    DOI: 10.1111/biom.12683
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12683
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Layla Parast & Lu Tian & Tianxi Cai, 2014. "Landmark Estimation of Survival and Treatment Effect in a Randomized Clinical Trial," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 384-394, March.
    3. A. Gregory DiRienzo, 2009. "Flexible Regression Model Selection for Survival Probabilities: With Application to AIDS," Biometrics, The International Biometric Society, vol. 65(4), pages 1194-1202, December.
    4. Hans C. Van Houwelingen, 2007. "Dynamic Prediction by Landmarking in Event History Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 34(1), pages 70-85, March.
    5. Hao Helen Zhang & Wenbin Lu, 2007. "Adaptive Lasso for Cox's proportional hazards model," Biometrika, Biometrika Trust, vol. 94(3), pages 691-703.
    6. Roland A. Matsouaka & Junlong Li & Tianxi Cai, 2014. "Evaluating marker-guided treatment selection strategies," Biometrics, The International Biometric Society, vol. 70(3), pages 489-499, September.
    7. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stephanie Chan & Xuan Wang & Ina Jazić & Sarah Peskoe & Yingye Zheng & Tianxi Cai, 2021. "Developing and evaluating risk prediction models with panel current status data," Biometrics, The International Biometric Society, vol. 77(2), pages 599-609, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Denis Agniel & Katherine P. Liao & Tianxi Cai, 2016. "Estimation and testing for multiple regulation of multivariate mixed outcomes," Biometrics, The International Biometric Society, vol. 72(4), pages 1194-1205, December.
    2. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    3. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    4. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    5. Zhixuan Fu & Shuangge Ma & Haiqun Lin & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized Variable Selection for Multi-center Competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 379-405, December.
    6. Chen, Xiaolin & Wang, Qihua, 2013. "Variable selection in the additive rate model for recurrent event data," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 491-503.
    7. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    8. Lian, Heng & Li, Jianbo & Hu, Yuao, 2013. "Shrinkage variable selection and estimation in proportional hazards models with additive structure and high dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 99-112.
    9. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    10. Lian, Heng & Li, Jianbo & Tang, Xingyu, 2014. "SCAD-penalized regression in additive partially linear proportional hazards models with an ultra-high-dimensional linear part," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 50-64.
    11. Ying Wu & Richard J. Cook, 2018. "Variable selection and prediction in biased samples with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 72-93, January.
    12. Yuan Jiang & Yunxiao He & Heping Zhang, 2016. "Variable Selection With Prior Information for Generalized Linear Models via the Prior LASSO Method," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 355-376, March.
    13. Fengting Yi & Niansheng Tang & Jianguo Sun, 2022. "Simultaneous variable selection and estimation for joint models of longitudinal and failure time data with interval censoring," Biometrics, The International Biometric Society, vol. 78(1), pages 151-164, March.
    14. Jiehuan Sun & Jose D. Herazo‐Maya & Philip L. Molyneaux & Toby M. Maher & Naftali Kaminski & Hongyu Zhao, 2019. "Regularized Latent Class Model for Joint Analysis of High‐Dimensional Longitudinal Biomarkers and a Time‐to‐Event Outcome," Biometrics, The International Biometric Society, vol. 75(1), pages 69-77, March.
    15. Du, Mingyue & Zhao, Xingqiu & Sun, Jianguo, 2022. "Variable selection for case-cohort studies with informatively interval-censored outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    16. Seung Jun Shin & Yichao Wu & Hao Helen Zhang & Yufeng Liu, 2014. "Probability-enhanced sufficient dimension reduction for binary classification," Biometrics, The International Biometric Society, vol. 70(3), pages 546-555, September.
    17. Ling Zhou & Lu Tang & Angela T. Song & Diane M. Cibrik & Peter X.-K. Song, 2017. "A LASSO Method to Identify Protein Signature Predicting Post-transplant Renal Graft Survival," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 431-452, December.
    18. Hao, Meiling & Lin, Yunyuan & Zhao, Xingqiu, 2016. "A relative error-based approach for variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 250-262.
    19. Hu, Yuao & Lian, Heng, 2013. "Variable selection in a partially linear proportional hazards model with a diverging dimensionality," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 61-69.
    20. Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:73:y:2017:i:4:p:1169-1178. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.