IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v7y2018icp153-164.html
   My bibliography  Save this article

Discrimination measures for discrete time-to-event predictions

Author

Listed:
  • Schmid, Matthias
  • Tutz, Gerhard
  • Welchowski, Thomas

Abstract

Discrete time-to-event models have become a popular tool for the statistical analysis of longitudinal data. These models are useful when either time is intrinsically discrete or when continuous time-to-event outcomes are collected at pre-specified follow-up times, yielding interval-censored data. While there exists a variety of methods for discrete-time model building and estimation, measures for the evaluation of discrete time-to-event predictions are scarce. To address this issue, a set of measures that quantify the discriminatory power of prediction rules for discrete event times is proposed. More specifically, sensitivity rates, specificity rates, AUC, and also a time-independent summary index (“concordance index”) for discrete time-to-event outcomes are developed. Using inverse-probability-of-censoring weighting, it is shown how to consistently estimate the proposed measures from a set of censored data. To illustrate the proposed methodology, the duration of unemployment of US citizens is analyzed, and it is demonstrated how discrimination measures can be used for model comparison.

Suggested Citation

  • Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.
  • Handle: RePEc:eee:ecosta:v:7:y:2018:i:c:p:153-164
    DOI: 10.1016/j.ecosta.2017.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306217300321
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2017.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    2. Van den Berg, Gerard J., 2001. "Duration models: specification, identification and multiple durations," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 55, pages 3381-3460, Elsevier.
    3. Giuseppe Casalicchio & Bernd Bischl & Anne-Laure Boulesteix & Matthias Schmid, 2016. "The residual-based predictiveness curve: A visual tool to assess the performance of prediction models," Biometrics, The International Biometric Society, vol. 72(2), pages 392-401, June.
    4. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    5. McCall, Brian P, 1996. "Unemployment Insurance Rules, Joblessness, and Part-Time Work," Econometrica, Econometric Society, vol. 64(3), pages 647-682, May.
    6. Mithat Gonen & Glenn Heller, 2005. "Concordance probability and discriminatory power in proportional hazards regression," Biometrika, Biometrika Trust, vol. 92(4), pages 965-970, December.
    7. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    8. Patrick J. Heagerty & Yingye Zheng, 2005. "Survival Model Predictive Accuracy and ROC Curves," Biometrics, The International Biometric Society, vol. 61(1), pages 92-105, March.
    9. Ming Wang & Qi Long, 2016. "Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic," Biometrics, The International Biometric Society, vol. 72(3), pages 897-906, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Moritz Berger & Thomas Welchowski & Steffen Schmitz-Valckenberg & Matthias Schmid, 2019. "A classification tree approach for the modeling of competing risks in discrete time," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 965-990, December.
    2. Burgard, Jan Pablo & Krause, Joscha & Schmaus, Simon, 2021. "Estimation of regional transition probabilities for spatial dynamic microsimulations from survey data lacking in regional detail," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruosha Li & Jing Ning & Ziding Feng, 2022. "Estimation and inference of predictive discrimination for survival outcome risk prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 219-240, April.
    2. Susana Díaz-Coto & Pablo Martínez-Camblor & Sonia Pérez-Fernández, 2020. "smoothROCtime: an R package for time-dependent ROC curve estimation," Computational Statistics, Springer, vol. 35(3), pages 1231-1251, September.
    3. Wolf, Petra & Schmidt, Georg & Ulm, Kurt, 2011. "The use of ROC for defining the validity of the prognostic index in censored data," Statistics & Probability Letters, Elsevier, vol. 81(7), pages 783-791, July.
    4. Sehee Kim & Douglas E. Schaubel & Keith P. McCullough, 2018. "A C†index for recurrent event data: Application to hospitalizations among dialysis patients," Biometrics, The International Biometric Society, vol. 74(2), pages 734-743, June.
    5. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    6. Cuihong Zhang & Jing Ning & Steven H. Belle & Robert H. Squires & Jianwen Cai & Ruosha Li, 2022. "Assessing predictive discrimination performance of biomarkers in the presence of treatment‐induced dependent censoring," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1137-1157, November.
    7. Weining Shen & Jing Ning & Ying Yuan, 2015. "A direct method to evaluate the time-dependent predictive accuracy for biomarkers," Biometrics, The International Biometric Society, vol. 71(2), pages 439-449, June.
    8. Yingye Zheng & Tianxi Cai & Ziding Feng, 2006. "Application of the Time-Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers," Biometrics, The International Biometric Society, vol. 62(1), pages 279-287, March.
    9. C. Jason Liang & Patrick J. Heagerty, 2017. "Rejoinder to discussions on: A risk-based measure of time-varying prognostic discrimination for survival models," Biometrics, The International Biometric Society, vol. 73(3), pages 745-748, September.
    10. C. Jason Liang & Patrick J. Heagerty, 2017. "A risk-based measure of time-varying prognostic discrimination for survival models," Biometrics, The International Biometric Society, vol. 73(3), pages 725-734, September.
    11. Yingye Zheng & Patrick J. Heagerty, 2007. "Prospective Accuracy for Longitudinal Markers," Biometrics, The International Biometric Society, vol. 63(2), pages 332-341, June.
    12. Tianxi Cai & Thomas A Gerds & Yingye Zheng & Jinbo Chen, 2011. "Robust Prediction of t-Year Survival with Data from Multiple Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 436-444, June.
    13. Mei-Cheng Wang & Shanshan Li, 2012. "Bivariate Marker Measurements and ROC Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1207-1218, December.
    14. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01364437, HAL.
    15. R. Schoop & E. Graf & M. Schumacher, 2008. "Quantifying the Predictive Performance of Prognostic Models for Censored Survival Data with Time-Dependent Covariates," Biometrics, The International Biometric Society, vol. 64(2), pages 603-610, June.
    16. Kyyrä, Tomi, 2010. "Partial unemployment insurance benefits and the transition rate to regular work," European Economic Review, Elsevier, vol. 54(7), pages 911-930, October.
    17. Giulia Barbati & Alessio Farcomeni, 2018. "Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomyopathy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 545-557, August.
    18. Dandan Liu & Tianxi Cai & Yingye Zheng, 2012. "Evaluating the Predictive Value of Biomarkers with Stratified Case-Cohort Design," Biometrics, The International Biometric Society, vol. 68(4), pages 1219-1227, December.
    19. Iulii Vasilev & Mikhail Petrovskiy & Igor Mashechkin, 2023. "Sensitivity of Survival Analysis Metrics," Mathematics, MDPI, vol. 11(20), pages 1-34, October.
    20. Debashis Ghosh, 2016. "A Modified Risk Set Approach to Biomarker Evaluation Studies," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 395-406, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:7:y:2018:i:c:p:153-164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.