IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v35y2020i3d10.1007_s00180-020-00955-7.html
   My bibliography  Save this article

smoothROCtime: an R package for time-dependent ROC curve estimation

Author

Listed:
  • Susana Díaz-Coto

    (University of Oviedo)

  • Pablo Martínez-Camblor

    (Dartmouth College)

  • Sonia Pérez-Fernández

    (University of Oviedo)

Abstract

The receiver operating characteristic (ROC) curve has become one of the most used tools for analyzing the diagnostic capacity of continuous biomarkers. When the studied outcome is a time-dependent variable two main generalizations have been proposed, based on properly extensions of the sensitivity and the specificity. Different procedures have been suggested for their estimation mainly under the presence of right censorship. Most of them have been implemented, as well, in diverse types of software, including R packages. This work focuses on the R implementation for the smooth estimation of time-dependent ROC curves. The theoretical connection between them through the joint distribution function of the biomarker and time-to-event variables prompts an approximation method: considered estimators are based on the bivariate kernel density estimator for the joint density function of the bidimensional variable (Marker, Time-to-event). The use of the package is illustrated with two real-world examples.

Suggested Citation

  • Susana Díaz-Coto & Pablo Martínez-Camblor & Sonia Pérez-Fernández, 2020. "smoothROCtime: an R package for time-dependent ROC curve estimation," Computational Statistics, Springer, vol. 35(3), pages 1231-1251, September.
  • Handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-020-00955-7
    DOI: 10.1007/s00180-020-00955-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-020-00955-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-020-00955-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    2. Patrick J. Heagerty & Yingye Zheng, 2005. "Survival Model Predictive Accuracy and ROC Curves," Biometrics, The International Biometric Society, vol. 61(1), pages 92-105, March.
    3. Ruth Etzioni & Margaret Pepe & Gary Longton & Chengcheng Hu & Gary Goodman, 1999. "Incorporating the Time Dimension in Receiver Operating Characteristic Curves: A Case Study of Prostate Cancer," Medical Decision Making, , vol. 19(3), pages 242-251, August.
    4. Hung Hung & Chin‐Tsang Chiang, 2010. "Optimal Composite Markers for Time‐Dependent Receiver Operating Characteristic Curves with Censored Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(4), pages 664-679, December.
    5. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    2. Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.
    3. Ruosha Li & Jing Ning & Ziding Feng, 2022. "Estimation and inference of predictive discrimination for survival outcome risk prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 219-240, April.
    4. Sehee Kim & Douglas E. Schaubel & Keith P. McCullough, 2018. "A C†index for recurrent event data: Application to hospitalizations among dialysis patients," Biometrics, The International Biometric Society, vol. 74(2), pages 734-743, June.
    5. Yingye Zheng & Patrick Heagerty, 2004. "Semiparametric Estimation of Time-Dependent: ROC Curves for Longitudinal Marker Data," UW Biostatistics Working Paper Series 1052, Berkeley Electronic Press.
    6. Weining Shen & Jing Ning & Ying Yuan, 2015. "A direct method to evaluate the time-dependent predictive accuracy for biomarkers," Biometrics, The International Biometric Society, vol. 71(2), pages 439-449, June.
    7. P. Saha & P. J. Heagerty, 2010. "Time-Dependent Predictive Accuracy in the Presence of Competing Risks," Biometrics, The International Biometric Society, vol. 66(4), pages 999-1011, December.
    8. Janez Stare & Maja Pohar Perme & Robin Henderson, 2011. "A Measure of Explained Variation for Event History Data," Biometrics, The International Biometric Society, vol. 67(3), pages 750-759, September.
    9. Yingye Zheng & Tianxi Cai & Ziding Feng, 2006. "Application of the Time-Dependent ROC Curves for Prognostic Accuracy with Multiple Biomarkers," Biometrics, The International Biometric Society, vol. 62(1), pages 279-287, March.
    10. C. Jason Liang & Patrick J. Heagerty, 2017. "Rejoinder to discussions on: A risk-based measure of time-varying prognostic discrimination for survival models," Biometrics, The International Biometric Society, vol. 73(3), pages 745-748, September.
    11. C. Jason Liang & Patrick J. Heagerty, 2017. "A risk-based measure of time-varying prognostic discrimination for survival models," Biometrics, The International Biometric Society, vol. 73(3), pages 725-734, September.
    12. Yingye Zheng & Patrick J. Heagerty, 2007. "Prospective Accuracy for Longitudinal Markers," Biometrics, The International Biometric Society, vol. 63(2), pages 332-341, June.
    13. Hajime Uno & Tianxi Cai & Lu Tian & L. J. Wei, 2011. "Graphical Procedures for Evaluating Overall and Subject-Specific Incremental Values from New Predictors with Censored Event Time Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1389-1396, December.
    14. Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
    15. Tianxi Cai & Thomas A Gerds & Yingye Zheng & Jinbo Chen, 2011. "Robust Prediction of t-Year Survival with Data from Multiple Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 436-444, June.
    16. Yingye Zheng & Tianxi Cai & Yuying Jin & Ziding Feng, 2012. "Evaluating Prognostic Accuracy of Biomarkers under Competing Risk," Biometrics, The International Biometric Society, vol. 68(2), pages 388-396, June.
    17. Richard Chamboko & Jorge Miguel Bravo, 2020. "A Multi-State Approach to Modelling Intermediate Events and Multiple Mortgage Loan Outcomes," Risks, MDPI, vol. 8(2), pages 1-29, June.
    18. Mei-Cheng Wang & Shanshan Li, 2012. "Bivariate Marker Measurements and ROC Analysis," Biometrics, The International Biometric Society, vol. 68(4), pages 1207-1218, December.
    19. Olivier Lopez & Xavier Milhaud & Pierre-Emmanuel Thérond, 2016. "Tree-based censored regression with applications in insurance," Post-Print hal-01364437, HAL.
    20. Cheng Zheng & Yingye Zheng, 2019. "Calibrating Variations in Biomarker Measures for Improving Prediction with Time-to-event Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 477-503, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:35:y:2020:i:3:d:10.1007_s00180-020-00955-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.