IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v77y2021i2p599-609.html
   My bibliography  Save this article

Developing and evaluating risk prediction models with panel current status data

Author

Listed:
  • Stephanie Chan
  • Xuan Wang
  • Ina Jazić
  • Sarah Peskoe
  • Yingye Zheng
  • Tianxi Cai

Abstract

Panel current status data arise frequently in biomedical studies when the occurrence of a particular clinical condition is only examined at several prescheduled visit times. Existing methods for analyzing current status data have largely focused on regression modeling based on commonly used survival models such as the proportional hazards model and the accelerated failure time model. However, these procedures have the limitations of being difficult to implement and performing sub‐optimally in relatively small sample sizes. The performance of these procedures is also unclear under model misspecification. In addition, no methods currently exist to evaluate the prediction performance of estimated risk models with panel current status data. In this paper, we propose a simple estimator under a general class of nonparametric transformation (NPT) models by fitting a logistic regression working model and demonstrate that our proposed estimator is consistent for the NPT model parameter up to a scale multiplier. Furthermore, we propose nonparametric estimators for evaluating the prediction performance of the risk score derived from model fitting, which is valid regardless of the adequacy of the fitted model. Extensive simulation results suggest that our proposed estimators perform well in finite samples and the regression parameter estimators outperform existing estimators under various scenarios. We illustrate the proposed procedures using data from the Framingham Offspring Study.

Suggested Citation

  • Stephanie Chan & Xuan Wang & Ina Jazić & Sarah Peskoe & Yingye Zheng & Tianxi Cai, 2021. "Developing and evaluating risk prediction models with panel current status data," Biometrics, The International Biometric Society, vol. 77(2), pages 599-609, June.
  • Handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:599-609
    DOI: 10.1111/biom.13317
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.13317
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.13317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yu Zheng & Tianxi Cai, 2017. "Augmented estimation for t‐year survival with censored regression models," Biometrics, The International Biometric Society, vol. 73(4), pages 1169-1178, December.
    2. Gorgens, Tue & Horowitz, Joel L., 1999. "Semiparametric estimation of a censored regression model with an unknown transformation of the dependent variable," Journal of Econometrics, Elsevier, vol. 90(2), pages 155-191, June.
    3. Songnian Chen, 2002. "Rank Estimation of Transformation Models," Econometrica, Econometric Society, vol. 70(4), pages 1683-1697, July.
    4. Lianming Wang & David B. Dunson, 2011. "Semiparametric Bayes' Proportional Odds Models for Current Status Data with Underreporting," Biometrics, The International Biometric Society, vol. 67(3), pages 1111-1118, September.
    5. Mongoué-Tchokoté, Solange & Kim, Jong-Sung, 2008. "New statistical software for the proportional hazards model with current status data," Computational Statistics & Data Analysis, Elsevier, vol. 52(9), pages 4272-4286, May.
    6. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    7. Huffer, Fred W. & Park, Cheolyong, 2007. "A test for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 98(2), pages 256-281, February.
    8. Daniel Rabinowitz & Rebecca A. Betensky & Anastasios A. Tsiatis, 2000. "Using Conditional Logistic Regression to Fit Proportional Odds Models to Interval Censored Data," Biometrics, The International Biometric Society, vol. 56(2), pages 511-518, June.
    9. Zhu, Li-Xing & Neuhaus, Georg, 2003. "Conditional tests for elliptical symmetry," Journal of Multivariate Analysis, Elsevier, vol. 84(2), pages 284-298, February.
    10. Khan, Shakeeb & Tamer, Elie, 2007. "Partial rank estimation of duration models with general forms of censoring," Journal of Econometrics, Elsevier, vol. 136(1), pages 251-280, January.
    11. Torben Martinussen, 2002. "Efficient estimation in additive hazards regression with current status data," Biometrika, Biometrika Trust, vol. 89(3), pages 649-658, August.
    12. Lu Tian & Tianxi Cai, 2006. "On the accelerated failure time model for current status and interval censored data," Biometrika, Biometrika Trust, vol. 93(2), pages 329-342, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irene Botosaru & Chris Muris & Krishna Pendakur, 2020. "Intertemporal Collective Household Models: Identification in Short Panels with Unobserved Heterogeneity in Resource Shares," Department of Economics Working Papers 2020-09, McMaster University.
    2. Bijwaard Govert E. & Ridder Geert & Woutersen Tiemen, 2013. "A Simple GMM Estimator for the Semiparametric Mixed Proportional Hazard Model," Journal of Econometric Methods, De Gruyter, vol. 2(1), pages 1-23, July.
    3. Lianming Wang & David B. Dunson, 2011. "Semiparametric Bayes' Proportional Odds Models for Current Status Data with Underreporting," Biometrics, The International Biometric Society, vol. 67(3), pages 1111-1118, September.
    4. Botosaru, Irene & Muris, Chris & Pendakur, Krishna, 2023. "Identification of time-varying transformation models with fixed effects, with an application to unobserved heterogeneity in resource shares," Journal of Econometrics, Elsevier, vol. 232(2), pages 576-597.
    5. Chen, Songnian, 2010. "Root-N-consistent estimation of fixed-effect panel data transformation models with censoring," Journal of Econometrics, Elsevier, vol. 159(1), pages 222-234, November.
    6. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    7. Yao Luo & Isabelle Perrigne & Quang Vuong, 2018. "Structural Analysis of Nonlinear Pricing," Journal of Political Economy, University of Chicago Press, vol. 126(6), pages 2523-2568.
    8. Youngki Shin & Zvezdomir Todorov, 2021. "Exact computation of maximum rank correlation estimator," The Econometrics Journal, Royal Economic Society, vol. 24(3), pages 589-607.
    9. Cory Koedel & Julian Betts, 2010. "Value Added to What? How a Ceiling in the Testing Instrument Influences Value-Added Estimation," Education Finance and Policy, MIT Press, vol. 5(1), pages 54-81, January.
    10. Irene Botosaru & Chris Muris, 2017. "Binarization for panel models with fixed effects," CeMMAP working papers 31/17, Institute for Fiscal Studies.
    11. Jiajuan Liang & Kai Wang Ng & Guoliang Tian, 2019. "A class of uniform tests for goodness-of-fit of the multivariate $$L_p$$ L p -norm spherical distributions and the $$l_p$$ l p -norm symmetric distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(1), pages 137-162, February.
    12. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
    13. Subbotin, Viktor, 2007. "Asymptotic and bootstrap properties of rank regressions," MPRA Paper 9030, University Library of Munich, Germany, revised 20 Mar 2008.
    14. Chiappori, Pierre-André & Komunjer, Ivana & Kristensen, Dennis, 2015. "Nonparametric identification and estimation of transformation models," Journal of Econometrics, Elsevier, vol. 188(1), pages 22-39.
    15. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    16. Huazhen Lin & Ling Zhou & Xiaohua Zhou, 2014. "Semiparametric Regression Analysis of Longitudinal Skewed Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 1031-1050, December.
    17. Chi-Chung Wen & Chien-Tai Lin, 2011. "Analysis of Current Status Data with Missing Covariates," Biometrics, The International Biometric Society, vol. 67(3), pages 760-769, September.
    18. Esmeralda A. Ramalho & Joaquim J. S. Ramalho, 2017. "Moment-based estimation of nonlinear regression models with boundary outcomes and endogeneity, with applications to nonnegative and fractional responses," Econometric Reviews, Taylor & Francis Journals, vol. 36(4), pages 397-420, April.
    19. Lin, Huazhen & Peng, Heng, 2013. "Smoothed rank correlation of the linear transformation regression model," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 615-630.
    20. Sapp Stephanie & van der Laan Mark J. & Page Kimberly, 2014. "Targeted Estimation of Binary Variable Importance Measures with Interval-Censored Outcomes," The International Journal of Biostatistics, De Gruyter, vol. 10(1), pages 77-97, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:77:y:2021:i:2:p:599-609. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.