IDEAS home Printed from https://ideas.repec.org/a/spr/stmapp/v27y2018i3d10.1007_s10260-017-0410-2.html
   My bibliography  Save this article

Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomyopathy

Author

Listed:
  • Giulia Barbati

    (Università di Trieste)

  • Alessio Farcomeni

    (Università di Roma “La Sapienza”)

Abstract

We propose new time-dependent sensitivity, specificity, ROC curves and net reclassification indices that can take into account biomarkers or scores that are repeatedly measured at different time-points. Inference proceeds through inverse probability weighting and resampling. The newly proposed measures exploit the information contained in biomarkers measured at different visits, rather than using only the measurements at the first visits. The contribution is illustrated via simulations and an original application on patients affected by dilated cardiomiopathy. The aim is to evaluate if repeated binary measurements of right ventricular dysfunction bring additive prognostic information on mortality/urgent heart transplant. It is shown that taking into account the trajectory of the new biomarker improves risk classification, while the first measurement alone might not be sufficiently informative. The methods are implemented in an R package (longROC), freely available on CRAN.

Suggested Citation

  • Giulia Barbati & Alessio Farcomeni, 2018. "Prognostic assessment of repeatedly measured time-dependent biomarkers, with application to dilated cardiomyopathy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 545-557, August.
  • Handle: RePEc:spr:stmapp:v:27:y:2018:i:3:d:10.1007_s10260-017-0410-2
    DOI: 10.1007/s10260-017-0410-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10260-017-0410-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10260-017-0410-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Rizopoulos, 2011. "Dynamic Predictions and Prospective Accuracy in Joint Models for Longitudinal and Time-to-Event Data," Biometrics, The International Biometric Society, vol. 67(3), pages 819-829, September.
    2. Yingye Zheng & Patrick Heagerty, 2004. "Semiparametric Estimation of Time-Dependent: ROC Curves for Longitudinal Marker Data," UW Biostatistics Working Paper Series 1052, Berkeley Electronic Press.
    3. R. Schoop & E. Graf & M. Schumacher, 2008. "Quantifying the Predictive Performance of Prognostic Models for Censored Survival Data with Time-Dependent Covariates," Biometrics, The International Biometric Society, vol. 64(2), pages 603-610, June.
    4. Jong-Hyeon Jeong & Sin-Ho Jung & Joseph P. Costantino, 2008. "Nonparametric Inference on Median Residual Life Function," Biometrics, The International Biometric Society, vol. 64(1), pages 157-163, March.
    5. Uno, Hajime & Cai, Tianxi & Tian, Lu & Wei, L.J., 2007. "Evaluating Prediction Rules for t-Year Survivors With Censored Regression Models," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 527-537, June.
    6. E. S. Venkatraman, 2000. "A Permutation Test to Compare Receiver Operating Characteristic Curves," Biometrics, The International Biometric Society, vol. 56(4), pages 1134-1138, December.
    7. Sin-Ho Jung & Jong-Hyeon Jeong & Hanna Bandos, 2009. "Regression on Quantile Residual Life," Biometrics, The International Biometric Society, vol. 65(4), pages 1203-1212, December.
    8. Yingye Zheng & Patrick J. Heagerty, 2005. "Partly Conditional Survival Models for Longitudinal Data," Biometrics, The International Biometric Society, vol. 61(2), pages 379-391, June.
    9. Patrick J. Heagerty & Thomas Lumley & Margaret S. Pepe, 2000. "Time-Dependent ROC Curves for Censored Survival Data and a Diagnostic Marker," Biometrics, The International Biometric Society, vol. 56(2), pages 337-344, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessio Farcomeni & Monia Ranalli & Sara Viviani, 2021. "Dimension reduction for longitudinal multivariate data by optimizing class separation of projected latent Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 462-480, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruosha Li & Xuelin Huang & Jorge Cortes, 2016. "Quantile residual life regression with longitudinal biomarker measurements for dynamic prediction," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 65(5), pages 755-773, November.
    2. Marlena Maziarz & Patrick Heagerty & Tianxi Cai & Yingye Zheng, 2017. "On longitudinal prediction with time-to-event outcome: Comparison of modeling options," Biometrics, The International Biometric Society, vol. 73(1), pages 83-93, March.
    3. Matthias Schmid & Thomas Hielscher & Thomas Augustin & Olaf Gefeller, 2011. "A Robust Alternative to the Schemper–Henderson Estimator of Prediction Error," Biometrics, The International Biometric Society, vol. 67(2), pages 524-535, June.
    4. Jing Zhang & Jing Ning & Ruosha Li, 2023. "Evaluating Dynamic Discrimination Performance of Risk Prediction Models for Survival Outcomes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(2), pages 353-371, July.
    5. Yingye Zheng & Patrick J. Heagerty, 2007. "Prospective Accuracy for Longitudinal Markers," Biometrics, The International Biometric Society, vol. 63(2), pages 332-341, June.
    6. Liang Li & Sheng Luo & Bo Hu & Tom Greene, 2017. "Dynamic Prediction of Renal Failure Using Longitudinal Biomarkers in a Cohort Study of Chronic Kidney Disease," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 357-378, December.
    7. R. Schoop & E. Graf & M. Schumacher, 2008. "Quantifying the Predictive Performance of Prognostic Models for Censored Survival Data with Time-Dependent Covariates," Biometrics, The International Biometric Society, vol. 64(2), pages 603-610, June.
    8. Peng Liu & Yixin Wang & Yong Zhou, 2015. "Quantile residual lifetime with right-censored and length-biased data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(5), pages 999-1028, October.
    9. Zahra Mansourvar & Torben Martinussen & Thomas H. Scheike, 2016. "An Additive–Multiplicative Restricted Mean Residual Life Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 487-504, June.
    10. Luis Alexander Crouch & Cheng Zheng & Ying Qing Chen, 2017. "Estimating a Treatment Effect in Residual Time Quantiles Under the Additive Hazards Model," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 298-315, June.
    11. P. Saha & P. J. Heagerty, 2010. "Time-Dependent Predictive Accuracy in the Presence of Competing Risks," Biometrics, The International Biometric Society, vol. 66(4), pages 999-1011, December.
    12. Paul Blanche & Cécile Proust-Lima & Lucie Loubère & Claudine Berr & Jean-François Dartigues & Hélène Jacqmin-Gadda, 2015. "Quantifying and comparing dynamic predictive accuracy of joint models for longitudinal marker and time-to-event in presence of censoring and competing risks," Biometrics, The International Biometric Society, vol. 71(1), pages 102-113, March.
    13. Patrick J. Heagerty & Yingye Zheng, 2005. "Survival Model Predictive Accuracy and ROC Curves," Biometrics, The International Biometric Society, vol. 61(1), pages 92-105, March.
    14. Tianxi Cai & Thomas A Gerds & Yingye Zheng & Jinbo Chen, 2011. "Robust Prediction of t-Year Survival with Data from Multiple Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 436-444, June.
    15. Schmid, Matthias & Tutz, Gerhard & Welchowski, Thomas, 2018. "Discrimination measures for discrete time-to-event predictions," Econometrics and Statistics, Elsevier, vol. 7(C), pages 153-164.
    16. Olli Saarela & Elja Arjas, 2015. "Non-parametric Bayesian Hazard Regression for Chronic Disease Risk Assessment," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 609-626, June.
    17. Ruosha Li & Jing Ning & Ziding Feng, 2022. "Estimation and inference of predictive discrimination for survival outcome risk prediction models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 219-240, April.
    18. Chiang, Chin-Tsang & Chiu, Chih-Heng, 2012. "Nonparametric and semiparametric optimal transformations of markers," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 124-141, January.
    19. Susana Díaz-Coto & Pablo Martínez-Camblor & Sonia Pérez-Fernández, 2020. "smoothROCtime: an R package for time-dependent ROC curve estimation," Computational Statistics, Springer, vol. 35(3), pages 1231-1251, September.
    20. Wang, Shikun & Li, Zhao & Lan, Lan & Zhao, Jieyi & Zheng, W. Jim & Li, Liang, 2022. "GPU accelerated estimation of a shared random effect joint model for dynamic prediction," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).

    More about this item

    Keywords

    AUC; NRI; ROC; Prognostic scores;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:stmapp:v:27:y:2018:i:3:d:10.1007_s10260-017-0410-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.