IDEAS home Printed from https://ideas.repec.org/r/wsi/acsxxx/v10y2007isupp0ns0219525907001355.html
   My bibliography  Save this item

Specification Of The Social Force Pedestrian Model By Evolutionary Adjustment To Video Tracking Data

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sun, Cheng & Sun, Shi & Qu, Dagang & Zhu, Xun & Liu, Ying, 2023. "Modeling of pedestrian turning behavior and prediction of pedestrian density distribution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
  2. Shi, Xiaomeng & Xue, Shuqi & Feliciani, Claudio & Shiwakoti, Nirajan & Lin, Junkai & Li, Dawei & Ye, Zhirui, 2021. "Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
  3. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
  4. Weihao Zheng & Ruifang Mou, 2023. "A Dynamic Network Loading Model for Hub Station Pedestrian Flow Collection and Distribution," Mathematics, MDPI, vol. 11(17), pages 1-28, August.
  5. Zhao, Ruifeng & Zhai, Yue & Qu, Lu & Wang, Ruhao & Huang, Yaoying & Dong, Qi, 2021. "A continuous floor field cellular automata model with interaction area for crowd evacuation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 575(C).
  6. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
  7. Tian, Xiaoyong & Li, Kun & Kang, Zengxin & Peng, Yun & Cui, Hongjun, 2020. "Simulating the dynamical features of evacuation governed by periodic vibrations," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  8. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
  9. Zhang, Hui & Xu, Jie & Jia, Limin & Shi, Yihan, 2021. "Research on walking efficiency of passengers around corner of subway station," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
  10. Pierrot Derjany & Sirish Namilae & Dahai Liu & Ashok Srinivasan, 2020. "Multiscale model for the optimal design of pedestrian queues to mitigate infectious disease spread," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
  11. Knut Haase & Mathias Kasper & Matthes Koch & Sven Müller, 2019. "A Pilgrim Scheduling Approach to Increase Safety During the Hajj," Operations Research, INFORMS, vol. 67(2), pages 376-406, March.
  12. Shi Sun & Cheng Sun & Dorine C. Duives & Serge P. Hoogendoorn, 2023. "Neural network model for predicting variation in walking dynamics of pedestrians in social groups," Transportation, Springer, vol. 50(3), pages 837-868, June.
  13. Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
  14. Ma, Liang & Chen, Bin & Chen, Lidong & Xu, Xiaoping & Liu, Sikai & Liu, Xiaocheng, 2022. "Data driven analysis of the desired speed in ordinary differential equation based pedestrian simulation models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 608(P1).
  15. Duives, Dorine C. & Daamen, Winnie & Hoogendoorn, Serge P., 2015. "Quantification of the level of crowdedness for pedestrian movements," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 427(C), pages 162-180.
  16. Kretz, Tobias, 2015. "On oscillations in the Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 272-285.
  17. Delilah Slack-Smith & Kasun P. Wijayaratna & Michelle Zeibots, 2024. "The Development of Modeling Shared Spaces to Support Sustainable Transport Systems: Introduction to the Integrated Pedestrian–Vehicle Model (IPVM)," Sustainability, MDPI, vol. 16(10), pages 1-23, May.
  18. García, Ander & Hernández-Delfin, Dariel & Lee, Dae-Jin & Ellero, Marco, 2023. "Limited visual range in the Social Force Model: Effects on macroscopic and microscopic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
  19. Tang, Tie-Qiao & Shao, Yi-Xiao & Chen, Liang, 2017. "Modeling pedestrian movement at the hall of high-speed railway station during the check-in process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 157-166.
  20. Francesco Zanlungo & Tetsushi Ikeda & Takayuki Kanda, 2012. "A Microscopic “Social Norm” Model to Obtain Realistic Macroscopic Velocity and Density Pedestrian Distributions," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-10, December.
  21. Jiajie Yu & Yanjie Ji & Liangpeng Gao & Qi Gao, 2019. "Optimization of Metro Passenger Organizing of Alighting and Boarding Processes: Simulated Evidence from the Metro Station in Nanjing, China," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
  22. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
  23. Xu, Qiancheng & Chraibi, Mohcine & Tordeux, Antoine & Zhang, Jun, 2019. "Generalized collision-free velocity model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  24. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
  25. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
  26. Huang, Zhongyi & Chraibi, Mohcine & Cao, Shuchao & Huang, Chuanli & Fang, Zhiming & Song, Weiguo, 2019. "A microscopic method for the evaluating of continuous pedestrian dynamic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
  27. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
  28. Sticco, I.M. & Frank, G.A. & Dorso, C.O., 2021. "Social Force Model parameter testing and optimization using a high stress real-life situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
  29. Lin, Peng & Ma, Jian & Liu, Tianyang & Ran, Tong & Si, Youliang & Li, Tao, 2016. "An experimental study of the “faster-is-slower” effect using mice under panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 157-166.
  30. Constanza Flores & Han Soo Lee & Erick Mas, 2024. "Understanding Tsunami Evacuation via a Social Force Model While Considering Stress Levels Using Agent-Based Modelling," Sustainability, MDPI, vol. 16(10), pages 1-20, May.
  31. Chraibi, Mohcine & Ensslen, Tim & Gottschalk, Hanno & Saadi, Mohamed & Seyfried, Armin, 2016. "Assessment of models for pedestrian dynamics with functional principal component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 451(C), pages 475-489.
  32. Wang, Jia & Ni, Shunjiang & Shen, Shifei & Li, Shuying, 2019. "Empirical study of crowd dynamic in public gathering places during a terrorist attack event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1-9.
  33. Li, Zitong & Lo, S.M. & Ma, Jian & Luo, X.W., 2020. "A study on passengers’ alighting and boarding process at metro platform by computer simulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 840-854.
  34. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
  35. Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
  36. Kang, Zengxin & Zhang, Lei & Li, Kun, 2019. "An improved social force model for pedestrian dynamics in shipwrecks," Applied Mathematics and Computation, Elsevier, vol. 348(C), pages 355-362.
  37. Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.
  38. Marija Nikolić & Michel Bierlaire & Matthieu de Lapparent & Riccardo Scarinci, 2019. "Multiclass Speed-Density Relationship for Pedestrian Traffic," Transportation Science, INFORMS, vol. 53(3), pages 642-664, May.
  39. Mohammed Shuaib & Zarita Zainuddin, 2015. "An Investigation Capability Model for Bidirectional Pedestrian Flow," Modern Applied Science, Canadian Center of Science and Education, vol. 9(12), pages 1-88, November.
  40. Knut Haase & Habib Zain Al Abideen & Salim Al-Bosta & Mathias Kasper & Matthes Koch & Sven Müller & Dirk Helbing, 2016. "Improving Pilgrim Safety During the Hajj: An Analytical and Operational Research Approach," Interfaces, INFORMS, vol. 46(1), pages 74-90, February.
  41. Wang, Lei & Zhang, Qian & Cai, Yun & Zhang, Jianlin & Ma, Qingguo, 2013. "Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2470-2478.
  42. Li, Yan & Liu, Hong & Liu, Guang-peng & Li, Liang & Moore, Philip & Hu, Bin, 2017. "A grouping method based on grid density and relationship for crowd evacuation simulation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 319-336.
  43. Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.