IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v490y2018icp38-49.html
   My bibliography  Save this article

Pedestrian headways — Reflection of territorial social forces

Author

Listed:
  • Krbálek, Milan
  • Hrabák, Pavel
  • Bukáček, Marek

Abstract

The aim of the article is to give a more detailed insight into territorial social forces acting between pedestrians by means of headway distribution and spectral rigidity. Probabilistic distribution of time headways between consecutive pedestrians is studied theoretically and experimentally. Several original experiments/empirical observations are presented and compared to data obtained from previously published experiments. The study is restricted to an unidirectional one-lane motion where overtaking is forbidden.

Suggested Citation

  • Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
  • Handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:38-49
    DOI: 10.1016/j.physa.2017.08.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117307379
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.08.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Armin Seyfried & Oliver Passon & Bernhard Steffen & Maik Boltes & Tobias Rupprecht & Wolfram Klingsch, 2009. "New Insights into Pedestrian Flow Through Bottlenecks," Transportation Science, INFORMS, vol. 43(3), pages 395-406, August.
    2. Liao, Weichen & Tordeux, Antoine & Seyfried, Armin & Chraibi, Mohcine & Drzycimski, Kevin & Zheng, Xiaoping & Zhao, Ying, 2016. "Measuring the steady state of pedestrian flow in bottleneck experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 248-261.
    3. M. Treiber & D. Helbing, 2009. "Hamilton-like statistics in onedimensional driven dissipative many-particle systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 68(4), pages 607-618, April.
    4. Anders Johansson & Dirk Helbing & Pradyumn K. Shukla, 2007. "Specification Of The Social Force Pedestrian Model By Evolutionary Adjustment To Video Tracking Data," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(supp0), pages 271-288.
    5. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    6. Krbalek, Milan & Helbing, Dirk, 2004. "Determination of interaction potentials in freeway traffic from steady-state statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 333(C), pages 370-378.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    2. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    3. Li, Zitong & Lo, S.M. & Ma, Jian & Luo, X.W., 2020. "A study on passengers’ alighting and boarding process at metro platform by computer simulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 840-854.
    4. Zhang, Hui & Xu, Jie & Jia, Limin & Shi, Yihan, 2021. "Research on walking efficiency of passengers around corner of subway station," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 573(C).
    5. Meiying Jiang & Qibing Jin & Lisheng Cheng, 2019. "Effects of Ticket-Checking Failure on Dynamics of Pedestrians at Multi-Exit Inspection Points with Various Layouts," IJERPH, MDPI, vol. 16(5), pages 1-16, March.
    6. Shi, Xiaomeng & Xue, Shuqi & Feliciani, Claudio & Shiwakoti, Nirajan & Lin, Junkai & Li, Dawei & Ye, Zhirui, 2021. "Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    7. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Cao, Shuchao & Lian, Liping & Chen, Mingyi & Yao, Ming & Song, Weiguo & Fang, Zhiming, 2018. "Investigation of difference of fundamental diagrams in pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 661-670.
    9. Lian, Liping & Song, Weiguo & Yuen, Kwok Kit Richard & Telesca, Luciano, 2018. "Investigating the time evolution of some parameters describing inflow processes of pedestrians in a room," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 77-88.
    10. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    11. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    12. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2019. "When ‘push’ does not come to ‘shove’: Revisiting ‘faster is slower’ in collective egress of human crowds," Transportation Research Part A: Policy and Practice, Elsevier, vol. 122(C), pages 51-69.
    13. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    14. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    15. Kretz, Tobias, 2015. "On oscillations in the Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 272-285.
    16. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    17. Zeng, Guang & Ye, Rui & Zhang, Jun & Cao, Shuchao & Song, Weiguo, 2023. "Macroscopic and microscopic movement properties of the fast walking pedestrian flow with single-file experiments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    18. Wang, Lei & Zhang, Qian & Cai, Yun & Zhang, Jianlin & Ma, Qingguo, 2013. "Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2470-2478.
    19. Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
    20. Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:490:y:2018:i:c:p:38-49. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.