IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0235891.html
   My bibliography  Save this article

Multiscale model for the optimal design of pedestrian queues to mitigate infectious disease spread

Author

Listed:
  • Pierrot Derjany
  • Sirish Namilae
  • Dahai Liu
  • Ashok Srinivasan

Abstract

There is direct evidence for the spread of infectious diseases such as influenza, SARS, measles, and norovirus in locations where large groups of people gather at high densities e.g. theme parks, airports, etc. The mixing of susceptible and infectious individuals in these high people density man-made environments involves pedestrian movement which is generally not taken into account in modeling studies of disease dynamics. We address this problem through a multiscale model that combines pedestrian dynamics with stochastic infection spread models. The pedestrian dynamics model is utilized to generate the trajectories of motion and contacts between infected and susceptible individuals. We incorporate this information into a stochastic infection dynamics model with infection probability and contact radius as primary inputs. This generic model is applicable for several directly transmitted diseases by varying the input parameters related to infectivity and transmission mechanisms. Through this multiscale framework, we estimate the aggregate numbers and probabilities of newly infected people for different winding queue configurations. We find that the queue configuration has a significant impact on disease spread for a range of infection radii and transmission probabilities. We quantify the effectiveness of wall separators in suppressing the disease spread compared to rope separators. Further, we find that configurations with short aisles lower the infection spread when rope separators are used.

Suggested Citation

  • Pierrot Derjany & Sirish Namilae & Dahai Liu & Ashok Srinivasan, 2020. "Multiscale model for the optimal design of pedestrian queues to mitigate infectious disease spread," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-21, July.
  • Handle: RePEc:plo:pone00:0235891
    DOI: 10.1371/journal.pone.0235891
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0235891
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0235891&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0235891?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Anders Johansson & Dirk Helbing & Pradyumn K. Shukla, 2007. "Specification Of The Social Force Pedestrian Model By Evolutionary Adjustment To Video Tracking Data," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(supp0), pages 271-288.
    2. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    3. Li, Zhaofeng & Jiang, Yichuan, 2014. "Friction based social force model for social foraging of sheep flock," Ecological Modelling, Elsevier, vol. 273(C), pages 55-62.
    4. Namilae, S. & Srinivasan, A. & Mubayi, A. & Scotch, M. & Pahle, R., 2017. "Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 248-260.
    5. Parisi, Daniel R. & Gilman, Marcelo & Moldovan, Herman, 2009. "A modification of the Social Force Model can reproduce experimental data of pedestrian flows in normal conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(17), pages 3600-3608.
    6. Wei-Guo, Song & Yan-Fei, Yu & Bing-Hong, Wang & Wei-Cheng, Fan, 2006. "Evacuation behaviors at exit in CA model with force essentials: A comparison with social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 658-666.
    7. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao, Tianyi & Mu, Tong & Shen, Sunle & Song, Yiming & Yang, Shufan & He, Jie, 2022. "A dynamic physical-distancing model to evaluate spatial measures for prevention of Covid-19 spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 592(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Namilae, S. & Srinivasan, A. & Mubayi, A. & Scotch, M. & Pahle, R., 2017. "Self-propelled pedestrian dynamics model: Application to passenger movement and infection propagation in airplanes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 248-260.
    2. Varas, A. & Cornejo, M.D. & Mainemer, D. & Toledo, B. & Rogan, J. & Muñoz, V. & Valdivia, J.A., 2007. "Cellular automaton model for evacuation process with obstacles," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(2), pages 631-642.
    3. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    4. Wang, Jia & Ni, Shunjiang & Shen, Shifei & Li, Shuying, 2019. "Empirical study of crowd dynamic in public gathering places during a terrorist attack event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1-9.
    5. Yamamoto, Hiroki & Yanagisawa, Daichi & Feliciani, Claudio & Nishinari, Katsuhiro, 2019. "Body-rotation behavior of pedestrians for collision avoidance in passing and cross flow," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 486-510.
    6. Li, Zitong & Lo, S.M. & Ma, Jian & Luo, X.W., 2020. "A study on passengers’ alighting and boarding process at metro platform by computer simulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 840-854.
    7. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    8. Zhang, Zhao & Fu, Daocheng, 2022. "Modeling pedestrian–vehicle mixed-flow in a complex evacuation scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    9. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    10. Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
    11. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    12. Xu, Qiancheng & Chraibi, Mohcine & Tordeux, Antoine & Zhang, Jun, 2019. "Generalized collision-free velocity model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Fu, Zhijian & Zhou, Xiaodong & Zhu, Kongjin & Chen, Yanqiu & Zhuang, Yifan & Hu, Yuqi & Yang, Lizhong & Chen, Changkun & Li, Jian, 2015. "A floor field cellular automaton for crowd evacuation considering different walking abilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 420(C), pages 294-303.
    14. García, Ander & Hernández-Delfin, Dariel & Lee, Dae-Jin & Ellero, Marco, 2023. "Limited visual range in the Social Force Model: Effects on macroscopic and microscopic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 612(C).
    15. Mohammed Shuaib & Zarita Zainuddin, 2015. "An Investigation Capability Model for Bidirectional Pedestrian Flow," Modern Applied Science, Canadian Center of Science and Education, vol. 9(12), pages 1-88, November.
    16. Fu, Zhijian & Luo, Lin & Yang, Yue & Zhuang, Yifan & Zhang, Peitong & Yang, Lizhong & Yang, Hongtai & Ma, Jian & Zhu, Kongjin & Li, Yanlai, 2016. "Effect of speed matching on fundamental diagram of pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 31-42.
    17. Tang, Ming & Jia, Hongfei & Ran, Bin & Li, Jun, 2016. "Analysis of the pedestrian arching at bottleneck based on a bypassing behavior model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 453(C), pages 242-258.
    18. Stock, Eduardo Velasco & da Silva, Roberto, 2023. "Lattice gas model to describe a nightclub dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Xianing Wang & Zhan Zhang & Ying Wang & Jun Yang & Linjun Lu, 2022. "A Study on Safety Evaluation of Pedestrian Flows Based on Partial Impact Dynamics by Real-Time Data in Subway Stations," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    20. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0235891. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.