IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4227-d1396758.html
   My bibliography  Save this article

The Development of Modeling Shared Spaces to Support Sustainable Transport Systems: Introduction to the Integrated Pedestrian–Vehicle Model (IPVM)

Author

Listed:
  • Delilah Slack-Smith

    (UTS Transport Research Centre, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Kasun P. Wijayaratna

    (UTS Transport Research Centre, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia)

  • Michelle Zeibots

    (UTS Transport Research Centre, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia)

Abstract

The significance of developing shared road infrastructure in cities throughout the world is growing. Driven by the need to improve traffic management in ways that enhance multiple sustainability outcomes, developing the tools needed to test shared space proposals is becoming more sought after by responsible agencies. This paper reviews approaches to simulation modeling focused on representing and assessing shared spaces, culminating in a new approach presented here called the Integrated Pedestrian–Vehicle Model (IPVM)—a novel framework that combines social force models, car-following models and other algorithms from the robotics domain to better describe both mobility and activity within a shared space. The IPVM recognizes that while shared spaces are inherently multimodal, past efforts have tended to use pedestrian models as a starting point. Most consider the interaction of pedestrians with other pedestrians and static road infrastructure. Shared space models are generally microscopic models that integrate a social force model with a variety of car-following models to describe the interaction between vehicles and pedestrians. However, there is little research and few practical methodologies that address the long-range conflict avoidance between vehicles and pedestrians. This aspect is crucial for accurately representing the desire lines and pathways of pedestrians and active transport users in complex environments like shared spaces. The IPVM describes and visualizes shared road infrastructure with an absence of separating infrastructure between users and outputs. It generates metrics that can be used in conjunction with the latest evaluation approaches to gauge the sustainability credentials of shared space road proposals. Enhanced modeling of shared space solutions can lead to more effective implementation, which can potentially reduce the presence of cars, increase public and active transport use and lead to a more sustainable transport system.

Suggested Citation

  • Delilah Slack-Smith & Kasun P. Wijayaratna & Michelle Zeibots, 2024. "The Development of Modeling Shared Spaces to Support Sustainable Transport Systems: Introduction to the Integrated Pedestrian–Vehicle Model (IPVM)," Sustainability, MDPI, vol. 16(10), pages 1-23, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4227-:d:1396758
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4227/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4227/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anders Johansson & Dirk Helbing & Pradyumn K. Shukla, 2007. "Specification Of The Social Force Pedestrian Model By Evolutionary Adjustment To Video Tracking Data," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(supp0), pages 271-288.
    2. Dirk Helbing & Lubos Buzna & Anders Johansson & Torsten Werner, 2005. "Self-Organized Pedestrian Crowd Dynamics: Experiments, Simulations, and Design Solutions," Transportation Science, INFORMS, vol. 39(1), pages 1-24, February.
    3. Dirk Helbing & Joachim Keltsch & Péter Molnár, 1997. "Modelling the evolution of human trail systems," Nature, Nature, vol. 388(6637), pages 47-50, July.
    4. Rob Imrie, 2012. "Auto-Disabilities: The Case of Shared Space Environments," Environment and Planning A, , vol. 44(9), pages 2260-2277, September.
    5. Hoogendoorn, S. P. & Bovy, P. H. L., 2004. "Pedestrian route-choice and activity scheduling theory and models," Transportation Research Part B: Methodological, Elsevier, vol. 38(2), pages 169-190, February.
    6. Hoogendoorn, Serge P. & Bovy, Piet H. L., 2004. "Dynamic user-optimal assignment in continuous time and space," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 571-592, August.
    7. Gerta Köster & Dirk Hartmann & Wolfram Klein, 2011. "Microscopic Pedestrian Simulations: From Passenger Exchange Times to Regional Evacuation," Operations Research Proceedings, in: Bo Hu & Karl Morasch & Stefan Pickl & Markus Siegle (ed.), Operations Research Proceedings 2010, pages 571-576, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marija Nikolić & Michel Bierlaire & Matthieu de Lapparent & Riccardo Scarinci, 2019. "Multiclass Speed-Density Relationship for Pedestrian Traffic," Transportation Science, INFORMS, vol. 53(3), pages 642-664, May.
    2. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    3. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    4. Liu, Qian, 2018. "The effect of dedicated exit on the evacuation of heterogeneous pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 305-323.
    5. Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
    6. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. Huang, Ling & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Lam, William H.K., 2009. "Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 127-141, January.
    8. Jiang, Yan-Qun & Zhang, Wei & Zhou, Shu-Guang, 2016. "Comparison study of the reactive and predictive dynamic models for pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 441(C), pages 51-61.
    9. Hoogendoorn, Serge P. & van Wageningen-Kessels, Femke L.M. & Daamen, Winnie & Duives, Dorine C., 2014. "Continuum modelling of pedestrian flows: From microscopic principles to self-organised macroscopic phenomena," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 684-694.
    10. Jie Xu & Yao Ning & Heng Wei & Wei Xie & Jianyuan Guo & Limin Jia & Yong Qin, 2015. "Route Choice in Subway Station during Morning Peak Hours: A Case of Guangzhou Subway," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-8, March.
    11. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    12. Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
    13. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    14. Xiao, Yao & Yang, Mofeng & Zhu, Zheng & Yang, Hai & Zhang, Lei & Ghader, Sepehr, 2021. "Modeling indoor-level non-pharmaceutical interventions during the COVID-19 pandemic: A pedestrian dynamics-based microscopic simulation approach," Transport Policy, Elsevier, vol. 109(C), pages 12-23.
    15. Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
    16. Qingyan Ning & Maosheng Li, 2022. "Modeling Pedestrian Detour Behavior By-Passing Conflict Areas," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    17. Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
    18. Guo, Ren-Yong, 2014. "Simulation of spatial and temporal separation of pedestrian counter flow through a bottleneck," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 428-439.
    19. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    20. Zhou, Zi-Xuan & Nakanishi, Wataru & Asakura, Yasuo, 2021. "Data-driven framework for the adaptive exit selection problem in pedestrian flow: Visual information based heuristics approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4227-:d:1396758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.