IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v523y2019icp1-9.html
   My bibliography  Save this article

Empirical study of crowd dynamic in public gathering places during a terrorist attack event

Author

Listed:
  • Wang, Jia
  • Ni, Shunjiang
  • Shen, Shifei
  • Li, Shuying

Abstract

Pedestrian dynamics in emergent situations such as stampedes and fire hazards have been widely studied, while few studies are focusing on human behavior in terrorist attack events. The research is vitally important for guiding efficient evacuation of the attacked crowd and reducing casualties. However, the research is insufficient due to the lack of researching materials. Besides, it is unconvincing for researchers to carry out these types of experiments. In this paper, the recorded video of the 3⋅1 Kunming terrorist attack event in China is analyzed. The instantaneous velocity field of the attacked crowd in the ticket hall is extracted from the video material, which is based on an image processing method. By analyzing the statistical characteristics of crowd velocity, crowd movement frequency and crowd entropy, several phenomena are found including crowd oscillating phenomenon, self-organizing grouping phenomenon. These discoveries will benefit the understanding of crowd dynamic in close-range attacks which is essential for the evacuation guidance efficiency, better design of architecture layout, and better defending strategies against the terrorists.

Suggested Citation

  • Wang, Jia & Ni, Shunjiang & Shen, Shifei & Li, Shuying, 2019. "Empirical study of crowd dynamic in public gathering places during a terrorist attack event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1-9.
  • Handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1-9
    DOI: 10.1016/j.physa.2019.01.120
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711930127X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.01.120?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, X.L. & Weng, W.G. & Yuan, H.Y. & Chen, J.G., 2013. "Empirical study of a unidirectional dense crowd during a real mass event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(12), pages 2781-2791.
    2. Dirk Helbing & Pratik Mukerji, "undated". "Crowd Disasters as Systemic Failures: Analysis of the Love Parade Disaster," Working Papers ETH-RC-12-010, ETH Zurich, Chair of Systems Design.
    3. Guikema, Seth D. & Aven, Terje, 2010. "Assessing risk from intelligent attacks: A perspective on approaches," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 478-483.
    4. H. Rosoff & D. Von Winterfeldt, 2007. "A Risk and Economic Analysis of Dirty Bomb Attacks on the Ports of Los Angeles and Long Beach," Risk Analysis, John Wiley & Sons, vol. 27(3), pages 533-546, June.
    5. Huang, Lida & Chen, Tao & Wang, Yan & Yuan, Hongyong, 2015. "Congestion detection of pedestrians using the velocity entropy: A case study of Love Parade 2010 disaster," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 440(C), pages 200-209.
    6. Anders Johansson & Dirk Helbing & Pradyumn K. Shukla, 2007. "Specification Of The Social Force Pedestrian Model By Evolutionary Adjustment To Video Tracking Data," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(supp0), pages 271-288.
    7. Dirk Helbing & Illés Farkas & Tamás Vicsek, 2000. "Simulating dynamical features of escape panic," Nature, Nature, vol. 407(6803), pages 487-490, September.
    8. Dai, Jicai & Li, Xia & Liu, Lin, 2013. "Simulation of pedestrian counter flow through bottlenecks by using an agent-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2202-2211.
    9. Burstedde, C & Klauck, K & Schadschneider, A & Zittartz, J, 2001. "Simulation of pedestrian dynamics using a two-dimensional cellular automaton," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 295(3), pages 507-525.
    10. Boris Podobnik & Marko Jusup & Dejan Kovac & H. E. Stanley, 2017. "Predicting the Rise of EU Right-Wing Populism in Response to Unbalanced Immigration," Complexity, Hindawi, vol. 2017, pages 1-12, August.
    11. Li, Shuying & Zhuang, Jun & Shen, Shifei & Wang, Jia, 2017. "Driving-forces model on individual behavior in scenarios considering moving threat agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 127-140.
    12. Jason Merrick & Gregory S. Parnell, 2011. "A Comparative Analysis of PRA and Intelligent Adversary Methods for Counterterrorism Risk Management," Risk Analysis, John Wiley & Sons, vol. 31(9), pages 1488-1510, September.
    13. Kirchner, Ansgar & Schadschneider, Andreas, 2002. "Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 312(1), pages 260-276.
    14. William L. McGill & Bilal M. Ayyub & Mark Kaminskiy, 2007. "Risk Analysis for Critical Asset Protection," Risk Analysis, John Wiley & Sons, vol. 27(5), pages 1265-1281, October.
    15. Wan, Jiahui & Sui, Jie & Yu, Hua, 2014. "Research on evacuation in the subway station in China based on the Combined Social Force Model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 394(C), pages 33-46.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jiaming & Zhang, Hui & Ding, Ning & Li, Yuntao, 2024. "A modified social force model for sudden attack evacuation based on Yerkes–Dodson law and the tendency toward low risk areas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    2. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    3. Yu, Hang & Li, Xintong & Song, Weiguo & Zhang, Jun & Li, Xudong & Xu, Han & Jiang, Kechun, 2022. "Pedestrian emergency evacuation model based on risk field under attack event," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    4. Yu, Rongfu & Mao, Qinghua & Lv, Jian, 2022. "An extended model for crowd evacuation considering rescue behavior," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 605(C).
    5. Yi, Ruolong & Du, Mingyu & Song, Weiguo & Zhang, Jun, 2024. "Fast trajectory extraction and pedestrian dynamics analysis using deep neural network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    6. Enrico Quagliarini & Fabio Fatiguso & Michele Lucesoli & Gabriele Bernardini & Elena Cantatore, 2021. "Risk Reduction Strategies against Terrorist Acts in Urban Built Environments: Towards Sustainable and Human-Centred Challenges," Sustainability, MDPI, vol. 13(2), pages 1-29, January.
    7. Jianlin, Li & Jun, Zhang & Xuehua, Song & Hang, Yu & Xintong, Li & Saizhe, Ding & Weiguo, Song, 2024. "The validation of pedestrian trajectories during turning and obstacle avoidance in virtual environments," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qian, 2018. "A social force model for the crowd evacuation in a terrorist attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 315-330.
    2. Lovreglio, Ruggiero & Ronchi, Enrico & Nilsson, Daniel, 2015. "Calibrating floor field cellular automaton models for pedestrian dynamics by using likelihood function optimization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 308-320.
    3. Li, Shuang & Yu, Xiaohui & Zhang, Yanjuan & Zhai, Changhai, 2018. "A numerical simulation strategy on occupant evacuation behaviors and casualty prediction in a building during earthquakes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 1238-1250.
    4. Zhao, Yongxiang & Li, Meifang & Lu, Xin & Tian, Lijun & Yu, Zhiyong & Huang, Kai & Wang, Yana & Li, Ting, 2017. "Optimal layout design of obstacles for panic evacuation using differential evolution," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 175-194.
    5. Leng, Biao & Wang, Jianyuan & Xiong, Zhang, 2015. "Pedestrian simulations in hexagonal cell local field model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 532-543.
    6. Haghani, Milad, 2021. "The knowledge domain of crowd dynamics: Anatomy of the field, pioneering studies, temporal trends, influential entities and outside-domain impact," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).
    7. Li, Zitong & Lo, S.M. & Ma, Jian & Luo, X.W., 2020. "A study on passengers’ alighting and boarding process at metro platform by computer simulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 840-854.
    8. Li, Shuying & Zhuang, Jun & Shen, Shifei & Wang, Jia, 2017. "Driving-forces model on individual behavior in scenarios considering moving threat agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 127-140.
    9. Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    10. Yue, Hao & Zhang, Junyao & Chen, Wenxin & Wu, Xinsen & Zhang, Xu & Shao, Chunfu, 2021. "Simulation of the influence of spatial obstacles on evacuation pedestrian flow in walking facilities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    11. Zheng, Xiaoping & Cheng, Yuan, 2011. "Conflict game in evacuation process: A study combining Cellular Automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(6), pages 1042-1050.
    12. Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
    13. Li, Jun & Fu, Siyao & He, Haibo & Jia, Hongfei & Li, Yanzhong & Guo, Yi, 2015. "Simulating large-scale pedestrian movement using CA and event driven model: Methodology and case study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 304-321.
    14. Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
    15. Li, Yang & Chen, Maoyin & Zheng, Xiaoping & Dou, Zhan & Cheng, Yuan, 2020. "Relationship between behavior aggressiveness and pedestrian dynamics using behavior-based cellular automata model," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    16. Kaji, Masaru & Inohara, Takehiro, 2017. "Cellular automaton simulation of unidirectional pedestrians flow in a corridor to reproduce the unique velocity profile of Hagen–Poiseuille flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 467(C), pages 85-95.
    17. Mohd Ibrahim, Azhar & Venkat, Ibrahim & Wilde, Philippe De, 2017. "Uncertainty in a spatial evacuation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 479(C), pages 485-497.
    18. Cui, Geng & Yanagisawa, Daichi & Nishinari, Katsuhiro, 2023. "Learning from experimental data to simulate pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 623(C).
    19. Li, Shengnan & Li, Xingang & Qu, Yunchao & Jia, Bin, 2015. "Block-based floor field model for pedestrian’s walking through corner," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 432(C), pages 337-353.
    20. Yu Song & Jia Liu & Qian Liu, 2021. "Dynamic Decision-Making Process of Evacuees during Post-Earthquake Evacuation near an Automatic Flap Barrier Gate System: A Broken Windows Perspective," Sustainability, MDPI, vol. 13(16), pages 1-19, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:523:y:2019:i:c:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.