Assessment of models for pedestrian dynamics with functional principal component analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.physa.2016.01.058
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Anders Johansson & Dirk Helbing & Pradyumn K. Shukla, 2007. "Specification Of The Social Force Pedestrian Model By Evolutionary Adjustment To Video Tracking Data," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(supp0), pages 271-288.
- Seyfried, Armin & Steffen, Bernhard & Lippert, Thomas, 2006. "Basics of modelling the pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 368(1), pages 232-238.
- Nishinari, Katsuhiro & Sugawara, Ken & Kazama, Toshiya & Schadschneider, Andreas & Chowdhury, Debashish, 2006. "Modelling of self-driven particles: Foraging ants and pedestrians," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(1), pages 132-141.
- Shiwakoti, Nirajan & Sarvi, Majid & Rose, Geoff & Burd, Martin, 2011. "Animal dynamics based approach for modeling pedestrian crowd egress under panic conditions," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1433-1449.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Bode, Nikolai W.F. & Chraibi, Mohcine & Holl, Stefan, 2019. "The emergence of macroscopic interactions between intersecting pedestrian streams," Transportation Research Part B: Methodological, Elsevier, vol. 119(C), pages 197-210.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
- Johansson, Fredrik & Peterson, Anders & Tapani, Andreas, 2015. "Waiting pedestrians in the social force model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 95-107.
- Chen, Chang-Kun & Li, Jian & Zhang, Dong, 2012. "Study on evacuation behaviors at a T-shaped intersection by a force-driving cellular automata model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(7), pages 2408-2420.
- Shi, Xiaomeng & Xue, Shuqi & Feliciani, Claudio & Shiwakoti, Nirajan & Lin, Junkai & Li, Dawei & Ye, Zhirui, 2021. "Verifying the applicability of a pedestrian simulation model to reproduce the effect of exit design on egress flow under normal and emergency conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
- Lin, Peng & Ma, Jian & Liu, Tianyang & Ran, Tong & Si, Youliang & Li, Tao, 2016. "An experimental study of the “faster-is-slower” effect using mice under panic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 452(C), pages 157-166.
- Chen, Changkun & Sun, Huakai & Lei, Peng & Zhao, Dongyue & Shi, Congling, 2021. "An extended model for crowd evacuation considering pedestrian panic in artificial attack," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
- Zheng, Yaochen & Chen, Jianqiao & Wei, Junhong & Guo, Xiwei, 2012. "Modeling of pedestrian evacuation based on the particle swarm optimization algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(17), pages 4225-4233.
- Shiwakoti, Nirajan & Sarvi, Majid, 2013. "Understanding pedestrian crowd panic: a review on model organisms approach," Journal of Transport Geography, Elsevier, vol. 26(C), pages 12-17.
- Krbálek, Milan & Hrabák, Pavel & Bukáček, Marek, 2018. "Pedestrian headways — Reflection of territorial social forces," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 38-49.
- Huang, Zhongyi & Chraibi, Mohcine & Cao, Shuchao & Huang, Chuanli & Fang, Zhiming & Song, Weiguo, 2019. "A microscopic method for the evaluating of continuous pedestrian dynamic models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 536(C).
- Chen, Juan & Luo, Qian & Wang, Qiao & Lo, Jacqueline T.Y. & Ma, Jian, 2024. "Experimental study on individual and crowd movement features around obstacles with different shape and size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 645(C).
- Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
- Saberi, Meead & Aghabayk, Kayvan & Sobhani, Amir, 2015. "Spatial fluctuations of pedestrian velocities in bidirectional streams: Exploring the effects of self-organization," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 434(C), pages 120-128.
- Wang, Jiayue & Boltes, Maik & Seyfried, Armin & Zhang, Jun & Ziemer, Verena & Weng, Wenguo, 2018. "Linking pedestrian flow characteristics with stepping locomotion," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 106-120.
- Ma, Liang & Chen, Bin & Wang, Xiaodong & Zhu, Zhengqiu & Wang, Rongxiao & Qiu, Xiaogang, 2019. "The analysis on the desired speed in social force model using a data driven approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 894-911.
- Marija Nikolić & Michel Bierlaire & Matthieu de Lapparent & Riccardo Scarinci, 2019. "Multiclass Speed-Density Relationship for Pedestrian Traffic," Transportation Science, INFORMS, vol. 53(3), pages 642-664, May.
- Abdelghany, Ahmed & Abdelghany, Khaled & Mahmassani, Hani, 2016. "A hybrid simulation-assignment modeling framework for crowd dynamics in large-scale pedestrian facilities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 86(C), pages 159-176.
- Sticco, I.M. & Frank, G.A. & Dorso, C.O., 2021. "Social Force Model parameter testing and optimization using a high stress real-life situation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
- Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
- Ma, Wanjing & Li, Li & Wang, Yinhai, 2016. "A driving force model for non-strict priority crossing behaviors of right-turn driversAuthor-Name: Lin, Dianchao," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 230-244.
More about this item
Keywords
Pedestrian dynamics; Statistical analysis; Comparison with experiment; Functional PCA; Model quality;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:451:y:2016:i:c:p:475-489. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.