IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i17p3654-d1224115.html
   My bibliography  Save this article

A Dynamic Network Loading Model for Hub Station Pedestrian Flow Collection and Distribution

Author

Listed:
  • Weihao Zheng

    (School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China)

  • Ruifang Mou

    (School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China)

Abstract

A macro network loading model for multi-flow lines, time varying, and pedestrian congestion is proposed. The station hub is abstracted as a network of different types of nodes, and the flow of passengers at each node is calculated in real time for the purpose of simulating the hub’s collection and distribution process. For correct transmission of passenger flow on heterogeneous networks, three types of indexes are proposed to distinguish the nodes, and the corresponding fundamental diagrams are then matched. This paper divides the update process of the dynamic network loading model into multiple processes by flow lines, and improves the computational speed of the DNL model. The proposed model is applied to the simulation of passenger flow collection and distribution in an actual hub station with multi-flow lines. The analysis results illustrate that the model can accurately reflect the realistic congestion facilities and explain the formation process of high-density areas. A rolling passenger flow control model based on optimal control theory is proposed. The effectiveness of the control model is verified based on simulation data.

Suggested Citation

  • Weihao Zheng & Ruifang Mou, 2023. "A Dynamic Network Loading Model for Hub Station Pedestrian Flow Collection and Distribution," Mathematics, MDPI, vol. 11(17), pages 1-28, August.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3654-:d:1224115
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/17/3654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/17/3654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anders Johansson & Dirk Helbing & Pradyumn K. Shukla, 2007. "Specification Of The Social Force Pedestrian Model By Evolutionary Adjustment To Video Tracking Data," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 10(supp0), pages 271-288.
    2. Huang, Ling & Wong, S.C. & Zhang, Mengping & Shu, Chi-Wang & Lam, William H.K., 2009. "Revisiting Hughes' dynamic continuum model for pedestrian flow and the development of an efficient solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 127-141, January.
    3. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    4. Muramatsu, Masakuni & Irie, Tunemasa & Nagatani, Takashi, 1999. "Jamming transition in pedestrian counter flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 267(3), pages 487-498.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flötteröd, Gunnar & Lämmel, Gregor, 2015. "Bidirectional pedestrian fundamental diagram," Transportation Research Part B: Methodological, Elsevier, vol. 71(C), pages 194-212.
    2. Ziyou Gao & Yunchao Qu & Xingang Li & Jiancheng Long & Hai-Jun Huang, 2014. "Simulating the Dynamic Escape Process in Large Public Places," Operations Research, INFORMS, vol. 62(6), pages 1344-1357, December.
    3. Hänseler, Flurin S. & Bierlaire, Michel & Farooq, Bilal & Mühlematter, Thomas, 2014. "A macroscopic loading model for time-varying pedestrian flows in public walking areas," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 60-80.
    4. Sun, Yi, 2018. "Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 836-847.
    5. Lili Lu, A. & Gang Ren, B. & Wei Wang, C. & Ching-Yao Chan, D., 2015. "Application of SFCA pedestrian simulation model to the signalized crosswalk width design," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 76-89.
    6. Li, Xingli & Guo, Fang & Kuang, Hua & Zhou, Huaguo, 2017. "Effect of psychological tension on pedestrian counter flow via an extended cost potential field cellular automaton model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 487(C), pages 47-57.
    7. Zhang, Xinwei & Zhang, Peihong & Zhong, Maohua, 2021. "A dual adaptive cellular automaton model based on a composite field and pedestrian heterogeneity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    8. Zhang, Zhao & Fu, Daocheng, 2022. "Modeling pedestrian–vehicle mixed-flow in a complex evacuation scenario," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 599(C).
    9. Wang, Lei & Zhang, Qian & Cai, Yun & Zhang, Jianlin & Ma, Qingguo, 2013. "Simulation study of pedestrian flow in a station hall during the Spring Festival travel rush," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2470-2478.
    10. Li, Xiao-Yang & Lin, Zhi-Yang & Zhang, Peng & Zhang, Xiao-Ning, 2023. "Reconstruction of density and cost potential field of Eikonal equation: Applications to discrete pedestrian flow models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 629(C).
    11. Xu, Qiancheng & Chraibi, Mohcine & Tordeux, Antoine & Zhang, Jun, 2019. "Generalized collision-free velocity model for pedestrian dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    12. Geng, Zhongfei & Li, Xingli & Kuang, Hua & Bai, Xuecen & Fan, Yanhong, 2019. "Effect of uncertain information on pedestrian dynamics under adverse sight conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 521(C), pages 681-691.
    13. Femke van Wageningen-Kessels & Winnie Daamen & Serge P. Hoogendoorn, 2018. "Two-Dimensional Approximate Godunov Scheme and What It Means For Continuum Pedestrian Flow Models," Transportation Science, INFORMS, vol. 52(3), pages 547-563, June.
    14. Jiajie Yu & Yanjie Ji & Liangpeng Gao & Qi Gao, 2019. "Optimization of Metro Passenger Organizing of Alighting and Boarding Processes: Simulated Evidence from the Metro Station in Nanjing, China," Sustainability, MDPI, vol. 11(13), pages 1-20, July.
    15. Hänseler, Flurin S. & Lam, William H.K. & Bierlaire, Michel & Lederrey, Gael & Nikolić, Marija, 2017. "A dynamic network loading model for anisotropic and congested pedestrian flows," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 149-168.
    16. Huang, Hai-Jun & Xia, Tian & Tian, Qiong & Liu, Tian-Liang & Wang, Chenlan & Li, Daqing, 2020. "Transportation issues in developing China's urban agglomerations," Transport Policy, Elsevier, vol. 85(C), pages 1-22.
    17. Sun, Yi, 2019. "Simulations of bi-direction pedestrian flow using kinetic Monte Carlo methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 519-531.
    18. Guo, Ning & Hu, Mao-Bin & Jiang, Rui, 2017. "Impact of variable body size on pedestrian dynamics by heuristics-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 109-114.
    19. Aghamohammadi, Rafegh & Laval, Jorge A., 2020. "A continuum model for cities based on the macroscopic fundamental diagram: A semi-Lagrangian solution method," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 101-116.
    20. Jiang, Yan-Qun & Zhou, Shu-Guang & Tian, Fang-Bao, 2015. "A higher-order macroscopic model for bi-direction pedestrian flow," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 425(C), pages 69-78.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:17:p:3654-:d:1224115. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.