My bibliography
Save this item
Deep Neural Networks for Estimation and Inference
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020.
"Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice,"
CEPR Discussion Papers
15418, C.E.P.R. Discussion Papers.
- Andrii Babii & Xi Chen & Eric Ghysels & Rohit Kumar, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," Papers 2010.08463, arXiv.org, revised Nov 2021.
- Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Isaiah Hull & Anna Grodecka-Messi, 2022. "Measuring the Impact of Taxes and Public Services on Property Values: A Double Machine Learning Approach," Papers 2203.14751, arXiv.org.
- Martin Huber, 2019.
"An introduction to flexible methods for policy evaluation,"
Papers
1910.00641, arXiv.org.
- Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
- Jason Poulos & Shuxi Zeng, 2021. "RNN‐based counterfactual prediction, with an application to homestead policy and public schooling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 1124-1139, August.
- Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2022.
"Machine Learning the Carbon Footprint of Bitcoin Mining,"
JRFM, MDPI, vol. 15(2), pages 1-30, February.
- Calvo Pardo, Héctor & Olmo, Jose & Mancini, Tullio, 2021. "Machine Learning the Carbon Footprint of Bitcoin Mining," CEPR Discussion Papers 16267, C.E.P.R. Discussion Papers.
- Hui Chen & Antoine Didisheim & Simon Scheidegger, 2021.
"Deep Structural Estimation: With an Application to Option Pricing,"
Papers
2102.09209, arXiv.org.
- Hui Chen & Antoine Didisheim & Simon Scheidegger, 2021. "Deep Structural Estimation:With an Application to Option Pricing," Cahiers de Recherches Economiques du Département d'économie 21.14, Université de Lausanne, Faculté des HEC, Département d’économie.
- Athey, Susan & Imbens, Guido W., 2019.
"Machine Learning Methods Economists Should Know About,"
Research Papers
3776, Stanford University, Graduate School of Business.
- Susan Athey & Guido Imbens, 2019. "Machine Learning Methods Economists Should Know About," Papers 1903.10075, arXiv.org.
- Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
- Chad Brown, 2024. "Inference in Partially Linear Models under Dependent Data with Deep Neural Networks," Papers 2410.22574, arXiv.org.
- Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024.
"ddml: Double/debiased machine learning in Stata,"
Stata Journal, StataCorp LP, vol. 24(1), pages 3-45, March.
- Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann & Achim Ahrens, 2022. "ddml: Double/debiased machine learning in Stata," Swiss Stata Conference 2022 02, Stata Users Group.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E & Wiemann, Thomas, 2023. "ddml: Double/Debiased Machine Learning in Stata," IZA Discussion Papers 15963, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2023. "ddml: Double/debiased machine learning in Stata," Papers 2301.09397, arXiv.org, revised Jan 2024.
- Jelena Bradic & Stefan Wager & Yinchu Zhu, 2019. "Sparsity Double Robust Inference of Average Treatment Effects," Papers 1905.00744, arXiv.org.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021.
"Is It Possible to Forecast the Price of Bitcoin?,"
Forecasting, MDPI, vol. 3(2), pages 1-44, May.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-04250269, HAL.
- Julien Chevallier & Dominique Guégan & Stéphane Goutte, 2021. "Is It Possible to Forecast the Price of Bitcoin?," Post-Print halshs-04250269, HAL.
- Daniel Jacob, 2021. "CATE meets ML," Digital Finance, Springer, vol. 3(2), pages 99-148, June.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Manuel Arellano & Stéphane Bonhomme & Micole De Vera & Laura Hospido & Siqi Wei, 2022.
"Income risk inequality: Evidence from Spanish administrative records,"
Quantitative Economics, Econometric Society, vol. 13(4), pages 1747-1801, November.
- Manuel Arellano & Stéphane Bonhomme & Micole De Vera & Laura Hospido & Siqi Wei, 2021. "Income risk inequality: evidence from Spanish administrative records," IFS Working Papers W21/37, Institute for Fiscal Studies.
- Manuel Arellano & Stéphane Bonhomme & Micole De Vera & Laura Hospido & Siqi Wei, 2021. "Income Risk Inequality: Evidence from Spanish Administrative Records," Working Papers 2136, Banco de España.
- Manuel Arellano & Stéphane Bonhomme & Micole De Vera & Laura Hospido & Siqi Wei, 2021. "Income Risk Inequality: Evidence from Spanish Administrative Records," Working Papers wp2021_2109, CEMFI.
- Christis Katsouris, 2023. "High Dimensional Time Series Regression Models: Applications to Statistical Learning Methods," Papers 2308.16192, arXiv.org.
- Davide Viviano, 2019. "Policy Targeting under Network Interference," Papers 1906.10258, arXiv.org, revised Apr 2024.
- Maur,Jean-Christophe & Nedeljkovic,Milan & Von Uexkull,Jan Erik, 2022. "FDI and Trade Outcomes at the Industry Level—A Data-Driven Approach," Policy Research Working Paper Series 9901, The World Bank.
- Peng Jin & Wenbin Lu & Yu Chen & Mengling Liu, 2023. "Change‐plane analysis for subgroup detection with a continuous treatment," Biometrics, The International Biometric Society, vol. 79(3), pages 1920-1933, September.
- Kirill Safonov, 2024. "Neural Network Approach to Demand Estimation and Dynamic Pricing in Retail," Papers 2412.00920, arXiv.org, revised Dec 2024.
- Günter J. Hitsch & Sanjog Misra & Walter W. Zhang, 2024. "Heterogeneous treatment effects and optimal targeting policy evaluation," Quantitative Marketing and Economics (QME), Springer, vol. 22(2), pages 115-168, June.
- Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation and Inference for a Class of Generalized Hierarchical Models," Papers 2311.02789, arXiv.org, revised Apr 2024.
- Hofert, Marius & Prasad, Avinash & Zhu, Mu, 2022. "Multivariate time-series modeling with generative neural networks," Econometrics and Statistics, Elsevier, vol. 23(C), pages 147-164.
- Shi, Chengchun & Zhou, Yunzhe & Li, Lexin, 2024. "Testing directed acyclic graph via structural, supervised and generative adversarial learning," LSE Research Online Documents on Economics 119446, London School of Economics and Political Science, LSE Library.
- Shi, Chengchun & Luo, Shikai & Le, Yuan & Zhu, Hongtu & Song, Rui, 2022. "Statistically efficient advantage learning for offline reinforcement learning in infinite horizons," LSE Research Online Documents on Economics 115598, London School of Economics and Political Science, LSE Library.
- Chen, Xiaohong & Liu, Ying & Ma, Shujie & Zhang, Zheng, 2024. "Causal inference of general treatment effects using neural networks with a diverging number of confounders," Journal of Econometrics, Elsevier, vol. 238(1).
- Fallahgoul, Hasan & Franstianto, Vincentius & Lin, Xin, 2024. "Asset pricing with neural networks: Significance tests," Journal of Econometrics, Elsevier, vol. 238(1).
- Daniel Jacob, 2021. "CATE meets ML -- The Conditional Average Treatment Effect and Machine Learning," Papers 2104.09935, arXiv.org, revised Apr 2021.
- Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Mar 2024.
- Christensen, Peter & Francisco, Paul & Myers, Erica & Shao, Hansen & Souza, Mateus, 2024.
"Energy efficiency can deliver for climate policy: Evidence from machine learning-based targeting,"
Journal of Public Economics, Elsevier, vol. 234(C).
- Peter Christensen & Paul Francisco & Erica Myers & Hansen Shao & Mateus Souza, 2022. "Energy Efficiency Can Deliver for Climate Policy: Evidence from Machine Learning-Based Targeting," NBER Working Papers 30467, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
- Nora Bearth & Michael Lechner, 2024. "Causal Machine Learning for Moderation Effects," Papers 2401.08290, arXiv.org, revised Jan 2025.
- Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Papers 2311.16333, arXiv.org, revised Apr 2024.
- Ziwei Mei & Peter C. B. Phillips & Zhentao Shi, 2024. "The boosted Hodrick‐Prescott filter is more general than you might think," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(7), pages 1260-1281, November.
- Zhao, Anqi & Ding, Peng, 2021. "Covariate-adjusted Fisher randomization tests for the average treatment effect," Journal of Econometrics, Elsevier, vol. 225(2), pages 278-294.
- Johann Pfitzinger, 2021. "An Interpretable Neural Network for Parameter Inference," Papers 2106.05536, arXiv.org.
- Dylan J. Foster & Vasilis Syrgkanis, 2019. "Orthogonal Statistical Learning," Papers 1901.09036, arXiv.org, revised Jun 2023.
- Harold D Chiang & Yukun Ma & Joel Rodrigue & Yuya Sasaki, 2021. "Dyadic double/debiased machine learning for analyzing determinants of free trade agreements," Papers 2110.04365, arXiv.org, revised Dec 2022.
- Anna Baiardi & Andrea A Naghi, 2024. "The value added of machine learning to causal inference: evidence from revisited studies," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages 213-234.
- Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
- Haupt, Johannes & Lessmann, Stefan, 2022. "Targeting customers under response-dependent costs," European Journal of Operational Research, Elsevier, vol. 297(1), pages 369-379.
- Zhou, Yunzhe & Shi, Chengchun & Li, Lexin & Yao, Qiwei, 2023. "Testing for the Markov property in time series via deep conditional generative learning," LSE Research Online Documents on Economics 119352, London School of Economics and Political Science, LSE Library.
- Chaohua Dong & Jiti Gao & Bin Peng & Yayi Yan, 2023. "Estimation of Semiparametric Multi-Index Models Using Deep Neural Networks," Monash Econometrics and Business Statistics Working Papers 21/23, Monash University, Department of Econometrics and Business Statistics.
- Ilias Chronopoulos & Aristeidis Raftapostolos & George Kapetanios, 2024.
"Forecasting Value-at-Risk Using Deep Neural Network Quantile Regression,"
Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 636-669.
- Chronopoulos, Ilias & Raftapostolos, Aristeidis & Kapetanios, George, 2023. "Forecasting Value-at-Risk using deep neural network quantile regression," Essex Finance Centre Working Papers 34837, University of Essex, Essex Business School.
- Sven Klaassen & Jan Teichert-Kluge & Philipp Bach & Victor Chernozhukov & Martin Spindler & Suhas Vijaykumar, 2024. "DoubleMLDeep: Estimation of Causal Effects with Multimodal Data," Papers 2402.01785, arXiv.org.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E & Wiemann, Thomas, 2024.
"Model Averaging and Double Machine Learning,"
IZA Discussion Papers
16714, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer & Thomas Wiemann, 2024. "Model Averaging and Double Machine Learning," Papers 2401.01645, arXiv.org, revised Sep 2024.
- Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Working Papers 22-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Saiz, Lorena & Ashwin, Julian & Kalamara, Eleni, 2021. "Nowcasting euro area GDP with news sentiment: a tale of two crises," Working Paper Series 2616, European Central Bank.
- Matthew Harding & Gabriel F. R. Vasconcelos, 2022. "Managers versus Machines: Do Algorithms Replicate Human Intuition in Credit Ratings?," Papers 2202.04218, arXiv.org.
- Ziwei Mei & Peter C. B. Phillips & Zhentao Shi, 2022.
"The boosted HP filter is more general than you might think,"
Papers
2209.09810, arXiv.org, revised Apr 2024.
- Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
- Phillip Heiler & Michael C. Knaus, 2021.
"Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments,"
Papers
2110.01427, arXiv.org, revised Aug 2023.
- Heiler, Phillip & Knaus, Michael C., 2022. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," IZA Discussion Papers 15580, Institute of Labor Economics (IZA).
- Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
- Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
- Alena Skolkova, 2023. "Instrumental Variable Estimation with Many Instruments Using Elastic-Net IV," CERGE-EI Working Papers wp759, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Jonathan Chassot & Michael Creel, 2023. "Constructing Efficient Simulated Moments Using Temporal Convolutional Networks," Working Papers 1412, Barcelona School of Economics.
- Stephan Hetzenecker & Maximilian Osterhaus, 2024. "Deep Learning for the Estimation of Heterogeneous Parameters in Discrete Choice Models," Papers 2408.09560, arXiv.org.
- Damir Filipovi'c & Puneet Pasricha, 2022. "Empirical Asset Pricing via Ensemble Gaussian Process Regression," Papers 2212.01048, arXiv.org, revised Jan 2025.
- Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2022. "Inference on Strongly Identified Functionals of Weakly Identified Functions," Papers 2208.08291, arXiv.org, revised Jun 2023.
- Chen, Jiafeng & Ritzwoller, David M., 2023. "Semiparametric estimation of long-term treatment effects," Journal of Econometrics, Elsevier, vol. 237(2).
- Cai, Hengrui & Shi, Chengchun & Song, Rui & Lu, Wenbin, 2023. "Jump interval-learning for individualized decision making with continuous treatments," LSE Research Online Documents on Economics 118231, London School of Economics and Political Science, LSE Library.
- Jingsen Kong & Yiming Liu & Guangren Yang & Wang Zhou, 2025. "Conformal prediction for robust deep nonparametric regression," Statistical Papers, Springer, vol. 66(1), pages 1-36, February.
- Victor Chernozhukov & Whitney K. Newey & Rahul Singh, 2022.
"Automatic Debiased Machine Learning of Causal and Structural Effects,"
Econometrica, Econometric Society, vol. 90(3), pages 967-1027, May.
- Victor Chernozhukov & Whitney K Newey & Rahul Singh, 2018. "Automatic Debiased Machine Learning of Causal and Structural Effects," Papers 1809.05224, arXiv.org, revised Oct 2022.
- Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
- Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
- Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
- Stijn Vansteelandt & Oliver Dukes, 2022. "Authors' reply to the Discussion of ‘Assumption‐lean inference for generalised linear model parameters’ by Vansteelandt and Dukes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 729-739, July.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," SciencePo Working papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & yanos Zylberberg, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & yanos Zylberberg, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & yanos Zylberberg, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," SciencePo Working papers halshs-03673240, HAL.
- Yukang Jiang & Xueqin Wang & Zhixi Xiong & Haisheng Yang & Ting Tian, 2022. "Interpreting and predicting the economy flows: A time-varying parameter global vector autoregressive integrated the machine learning model," Papers 2209.05998, arXiv.org.
- Lin Liu & Chang Li, 2023. "New $\sqrt{n}$-consistent, numerically stable higher-order influence function estimators," Papers 2302.08097, arXiv.org.
- Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2020. "Neural Network Models for Empirical Finance," JRFM, MDPI, vol. 13(11), pages 1-22, October.
- Philippe Goulet Coulombe, 2022. "A Neural Phillips Curve and a Deep Output Gap," Papers 2202.04146, arXiv.org, revised Oct 2024.
- Pranjal Rawat, 2024. "A Deep Learning Approach to Heterogeneous Consumer Aesthetics in Retail Fashion," Papers 2405.10498, arXiv.org.
- Tommaso Manfè & Luca Nunziata, 2023. "Difference-In-Difference Design With Repeated Cross-Sections Under Compositional Changes: a Monte-Carlo Evaluation of Alternative Approaches," "Marco Fanno" Working Papers 0305, Dipartimento di Scienze Economiche "Marco Fanno".
- Victor Quintas-Martinez, 2022. "Finite-Sample Guarantees for High-Dimensional DML," Papers 2206.07386, arXiv.org.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2020. "Deep Learning for Individual Heterogeneity: An Automatic Inference Framework," Papers 2010.14694, arXiv.org, revised Jul 2021.
- Michael P. Leung & Pantelis Loupos, 2022. "Graph Neural Networks for Causal Inference Under Network Confounding," Papers 2211.07823, arXiv.org, revised Mar 2024.
- Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Oct 2024.
- Sonya Georgieva, 2023. "Application of Artificial Intelligence and Machine Learning in the Conduct of Monetary Policy by Central Banks," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 8, pages 177-199.