IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.09560.html
   My bibliography  Save this paper

Deep Learning for the Estimation of Heterogeneous Parameters in Discrete Choice Models

Author

Listed:
  • Stephan Hetzenecker
  • Maximilian Osterhaus

Abstract

This paper studies the finite sample performance of the flexible estimation approach of Farrell, Liang, and Misra (2021a), who propose to use deep learning for the estimation of heterogeneous parameters in economic models, in the context of discrete choice models. The approach combines the structure imposed by economic models with the flexibility of deep learning, which assures the interpretebility of results on the one hand, and allows estimating flexible functional forms of observed heterogeneity on the other hand. For inference after the estimation with deep learning, Farrell et al. (2021a) derive an influence function that can be applied to many quantities of interest. We conduct a series of Monte Carlo experiments that investigate the impact of regularization on the proposed estimation and inference procedure in the context of discrete choice models. The results show that the deep learning approach generally leads to precise estimates of the true average parameters and that regular robust standard errors lead to invalid inference results, showing the need for the influence function approach for inference. Without regularization, the influence function approach can lead to substantial bias and large estimated standard errors caused by extreme outliers. Regularization reduces this property and stabilizes the estimation procedure, but at the expense of inducing an additional bias. The bias in combination with decreasing variance associated with increasing regularization leads to the construction of invalid inferential statements in our experiments. Repeated sample splitting, unlike regularization, stabilizes the estimation approach without introducing an additional bias, thereby allowing for the construction of valid inferential statements.

Suggested Citation

  • Stephan Hetzenecker & Maximilian Osterhaus, 2024. "Deep Learning for the Estimation of Heterogeneous Parameters in Discrete Choice Models," Papers 2408.09560, arXiv.org.
  • Handle: RePEc:arx:papers:2408.09560
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.09560
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    2. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    3. Shenhao Wang & Baichuan Mo & Stephane Hess & Jinhua Zhao, 2021. "Comparing hundreds of machine learning classifiers and discrete choice models in predicting travel behavior: an empirical benchmark," Papers 2102.01130, arXiv.org.
    4. Newey, Whitney K, 1994. "The Asymptotic Variance of Semiparametric Estimators," Econometrica, Econometric Society, vol. 62(6), pages 1349-1382, November.
    5. Sifringer, Brian & Lurkin, Virginie & Alahi, Alexandre, 2020. "Enhancing discrete choice models with representation learning," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 236-261.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    3. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    4. Chen, Jiafeng & Ritzwoller, David M., 2023. "Semiparametric estimation of long-term treatment effects," Journal of Econometrics, Elsevier, vol. 237(2).
    5. Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    6. Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Mar 2024.
    7. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    9. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    10. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
    11. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    12. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    13. Juan Carlos Escanciano & Telmo P'erez-Izquierdo, 2023. "Automatic Locally Robust Estimation with Generated Regressors," Papers 2301.10643, arXiv.org, revised Nov 2023.
    14. Shi, Chengchun & Zhou, Yunzhe & Li, Lexin, 2023. "Testing directed acyclic graph via structural, supervised and generative adversarial learning," LSE Research Online Documents on Economics 119446, London School of Economics and Political Science, LSE Library.
    15. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    16. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    17. Stéphane Bonhomme & Martin Weidner, 2020. "Minimizing Sensitivity to Model Misspecification," CeMMAP working papers CWP37/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    18. Stéphane Bonhomme & Martin Weidner, 2022. "Minimizing sensitivity to model misspecification," Quantitative Economics, Econometric Society, vol. 13(3), pages 907-954, July.
    19. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    20. Yuya Sasaki & Takuya Ura & Yichong Zhang, 2022. "Unconditional quantile regression with high‐dimensional data," Quantitative Economics, Econometric Society, vol. 13(3), pages 955-978, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.09560. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.