IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.08290.html
   My bibliography  Save this paper

Causal Machine Learning for Moderation Effects

Author

Listed:
  • Nora Bearth
  • Michael Lechner

Abstract

It is valuable for any decision maker to know the impact of decisions (treatments) on average and for subgroups. The causal machine learning literature has recently provided tools for estimating group average treatment effects (GATE) to understand treatment heterogeneity better. This paper addresses the challenge of interpreting such differences in treatment effects between groups while accounting for variations in other covariates. We propose a new parameter, the balanced group average treatment effect (BGATE), which measures a GATE with a specific distribution of a priori-determined covariates. By taking the difference of two BGATEs, we can analyse heterogeneity more meaningfully than by comparing two GATEs. The estimation strategy for this parameter is based on double/debiased machine learning for discrete treatments in an unconfoundedness setting, and the estimator is shown to be $\sqrt{N}$-consistent and asymptotically normal under standard conditions. Adding additional identifying assumptions allows specific balanced differences in treatment effects between groups to be interpreted causally, leading to the causal balanced group average treatment effect. We explore the finite sample properties in a small-scale simulation study and demonstrate the usefulness of these parameters in an empirical example.

Suggested Citation

  • Nora Bearth & Michael Lechner, 2024. "Causal Machine Learning for Moderation Effects," Papers 2401.08290, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2401.08290
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.08290
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Victor Chernozhukov & Iván Fernández‐Val & Ye Luo, 2018. "The Sorted Effects Method: Discovering Heterogeneous Effects Beyond Their Averages," Econometrica, Econometric Society, vol. 86(6), pages 1911-1938, November.
    2. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    3. Oliver Hines & Oliver Dukes & Karla Diaz-Ordaz & Stijn Vansteelandt, 2022. "Demystifying Statistical Learning Based on Efficient Influence Functions," The American Statistician, Taylor & Francis Journals, vol. 76(3), pages 292-304, July.
    4. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    5. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018. "Double/debiased machine learning for treatment and structural parameters," Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
    6. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    7. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    8. Helmut Farbmacher & Martin Huber & Lukáš Lafférs & Henrika Langen & Martin Spindler, 2022. "Causal mediation analysis with double machine learning [Mediation analysis via potential outcomes models]," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 277-300.
    9. Bansak, Kirk & Bechtel, Michael M. & Margalit, Yotam, 2021. "Why Austerity? The Mass Politics of a Contested Policy," American Political Science Review, Cambridge University Press, vol. 115(2), pages 486-505, May.
    10. Jason Abrevaya & Yu-Chin Hsu & Robert P. Lieli, 2015. "Estimating Conditional Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 485-505, October.
    11. Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
    12. Dylan J. Foster & Vasilis Syrgkanis, 2019. "Orthogonal Statistical Learning," Papers 1901.09036, arXiv.org, revised Jun 2023.
    13. Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2022. "Heterogeneous Employment Effects of Job Search Programs: A Machine Learning Approach," Journal of Human Resources, University of Wisconsin Press, vol. 57(2), pages 597-636.
    14. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    15. Alberto Abadie & David Drukker & Jane Leber Herr & Guido W. Imbens, 2004. "Implementing matching estimators for average treatment effects in Stata," Stata Journal, StataCorp LP, vol. 4(3), pages 290-311, September.
    16. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    17. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    18. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    19. X Nie & S Wager, 2021. "Quasi-oracle estimation of heterogeneous treatment effects [TensorFlow: A system for large-scale machine learning]," Biometrika, Biometrika Trust, vol. 108(2), pages 299-319.
    20. Lu Tian & Ash A. Alizadeh & Andrew J. Gentles & Robert Tibshirani, 2014. "A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1517-1532, December.
    21. Kirk Bansak, 2021. "Estimating causal moderation effects with randomized treatments and non‐randomized moderators," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(1), pages 65-86, January.
    22. Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
    23. Vira Semenova & Victor Chernozhukov, 2021. "Debiased machine learning of conditional average treatment effects and other causal functions," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 264-289.
    24. Edward H. Kennedy & Zongming Ma & Matthew D. McHugh & Dylan S. Small, 2017. "Non-parametric methods for doubly robust estimation of continuous treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1229-1245, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federica Mascolo & Nora Bearth & Fabian Muny & Michael Lechner & Jana Mareckova, 2024. "The Heterogeneous Effects of Active Labour Market Policies in Switzerland," Papers 2410.23322, arXiv.org.
    2. Nora Bearth, 2024. "Beyond Baby Blues: The Child Penalty in Mental Health in Switzerland," Papers 2410.20861, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
    2. Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
    3. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    4. Daniel Goller, 2023. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
    5. Michael Lechner, 2023. "Causal Machine Learning and its use for public policy," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 159(1), pages 1-15, December.
    6. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    7. Gabriel Okasa, 2022. "Meta-Learners for Estimation of Causal Effects: Finite Sample Cross-Fit Performance," Papers 2201.12692, arXiv.org.
    8. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    9. Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
    10. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    11. Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Economics Working Paper Series 2108, University of St. Gallen, School of Economics and Political Science.
    12. Michael Zimmert & Michael Lechner, 2019. "Nonparametric estimation of causal heterogeneity under high-dimensional confounding," Papers 1908.08779, arXiv.org.
    13. Lechner, Michael, 2018. "Modified Causal Forests for Estimating Heterogeneous Causal Effects," IZA Discussion Papers 12040, Institute of Labor Economics (IZA).
    14. Cockx, Bart & Lechner, Michael & Bollens, Joost, 2023. "Priority to unemployed immigrants? A causal machine learning evaluation of training in Belgium," Labour Economics, Elsevier, vol. 80(C).
    15. Rahul Singh & Liyuan Xu & Arthur Gretton, 2020. "Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves," Papers 2010.04855, arXiv.org, revised Oct 2022.
    16. Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
    17. Jonathan Fuhr & Philipp Berens & Dominik Papies, 2024. "Estimating Causal Effects with Double Machine Learning -- A Method Evaluation," Papers 2403.14385, arXiv.org, revised Apr 2024.
    18. Daniele Ballinari & Nora Bearth, 2024. "Improving the Finite Sample Performance of Double/Debiased Machine Learning with Propensity Score Calibration," Papers 2409.04874, arXiv.org.
    19. Hugo Bodory & Martin Huber & Michael Lechner, 2024. "The Finite Sample Performance of Instrumental Variable-Based Estimators of the Local Average Treatment Effect When Controlling for Covariates," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2053-2078, October.
    20. Goller, Daniel & Lechner, Michael & Moczall, Andreas & Wolff, Joachim, 2020. "Does the estimation of the propensity score by machine learning improve matching estimation? The case of Germany's programmes for long term unemployed," Labour Economics, Elsevier, vol. 65(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.08290. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.