IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.01785.html
   My bibliography  Save this paper

DoubleMLDeep: Estimation of Causal Effects with Multimodal Data

Author

Listed:
  • Sven Klaassen
  • Jan Teichert-Kluge
  • Philipp Bach
  • Victor Chernozhukov
  • Martin Spindler
  • Suhas Vijaykumar

Abstract

This paper explores the use of unstructured, multimodal data, namely text and images, in causal inference and treatment effect estimation. We propose a neural network architecture that is adapted to the double machine learning (DML) framework, specifically the partially linear model. An additional contribution of our paper is a new method to generate a semi-synthetic dataset which can be used to evaluate the performance of causal effect estimation in the presence of text and images as confounders. The proposed methods and architectures are evaluated on the semi-synthetic dataset and compared to standard approaches, highlighting the potential benefit of using text and images directly in causal studies. Our findings have implications for researchers and practitioners in economics, marketing, finance, medicine and data science in general who are interested in estimating causal quantities using non-traditional data.

Suggested Citation

  • Sven Klaassen & Jan Teichert-Kluge & Philipp Bach & Victor Chernozhukov & Martin Spindler & Suhas Vijaykumar, 2024. "DoubleMLDeep: Estimation of Causal Effects with Multimodal Data," Papers 2402.01785, arXiv.org.
  • Handle: RePEc:arx:papers:2402.01785
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.01785
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    2. Ye Luo & Martin Spindler & Jannis Kuck, 2016. "High-Dimensional $L_2$Boosting: Rate of Convergence," Papers 1602.08927, arXiv.org, revised Jul 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phillip Heiler & Michael C. Knaus, 2021. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," Papers 2110.01427, arXiv.org, revised Aug 2023.
    2. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
    4. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    5. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    6. Manuel Arellano & Stéphane Bonhomme & Micole De Vera & Laura Hospido & Siqi Wei, 2022. "Income risk inequality: Evidence from Spanish administrative records," Quantitative Economics, Econometric Society, vol. 13(4), pages 1747-1801, November.
    7. Shi, Chengchun & Zhou, Yunzhe & Li, Lexin, 2023. "Testing directed acyclic graph via structural, supervised and generative adversarial learning," LSE Research Online Documents on Economics 119446, London School of Economics and Political Science, LSE Library.
    8. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    9. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    10. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.
    11. Victor Chernozhukov & Vira Semenova, 2018. "Simultaneous inference for Best Linear Predictor of the Conditional Average Treatment Effect and other structural functions," CeMMAP working papers CWP40/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    12. Philippe Goulet Coulombe & Mikael Frenette & Karin Klieber, 2023. "From Reactive to Proactive Volatility Modeling with Hemisphere Neural Networks," Working Papers 23-04, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2023.
    13. Hector F. Calvo-Pardo & Tullio Mancini & Jose Olmo, 2020. "Neural Network Models for Empirical Finance," JRFM, MDPI, vol. 13(11), pages 1-22, October.
    14. Ziwei Mei & Zhentao Shi & Peter C. B. Phillips, 2022. "The boosted HP filter is more general than you might think," Cowles Foundation Discussion Papers 2348, Cowles Foundation for Research in Economics, Yale University.
    15. Kyle Colangelo & Ying-Ying Lee, 2020. "Double Debiased Machine Learning Nonparametric Inference with Continuous Treatments," Papers 2004.03036, arXiv.org, revised Sep 2023.
    16. Hugo Bodory & Martin Huber & Lukáš Lafférs, 2022. "Evaluating (weighted) dynamic treatment effects by double machine learning [Identification of causal effects using instrumental variables]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 628-648.
    17. Daniel Jacob, 2021. "CATE meets ML -- The Conditional Average Treatment Effect and Machine Learning," Papers 2104.09935, arXiv.org, revised Apr 2021.
    18. Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
    19. Jonathan Chassot & Michael Creel, 2023. "Constructing Efficient Simulated Moments Using Temporal Convolutional Networks," Working Papers 1412, Barcelona School of Economics.
    20. Ghysels, Eric & Babii, Andrii & Chen, Xi & Kumar, Rohit, 2020. "Binary Choice with Asymmetric Loss in a Data-Rich Environment: Theory and an Application to Racial Justice," CEPR Discussion Papers 15418, C.E.P.R. Discussion Papers.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.01785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.