IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.10498.html
   My bibliography  Save this paper

A Deep Learning Approach to Heterogeneous Consumer Aesthetics in Retail Fashion

Author

Listed:
  • Pranjal Rawat

Abstract

In some markets, the visual appearance of a product matters a lot. This paper investigates consumer transactions from a major fashion retailer, focusing on consumer aesthetics. Pretrained multimodal models convert images and text descriptions into high-dimensional embeddings. The value of these embeddings is verified both empirically and by their ability to segment the product space. A discrete choice model is used to decompose the distinct drivers of consumer choice: price, visual aesthetics, descriptive details, and seasonal variations. Consumers are allowed to differ in their preferences over these factors, both through observed variation in demographics and allowing for unobserved types. Estimation and inference employ automatic differentiation and GPUs, making it scalable and portable. The model reveals significant differences in price sensitivity and aesthetic preferences across consumers. The model is validated by its ability to predict the relative success of new designs and purchase patterns.

Suggested Citation

  • Pranjal Rawat, 2024. "A Deep Learning Approach to Heterogeneous Consumer Aesthetics in Retail Fashion," Papers 2405.10498, arXiv.org.
  • Handle: RePEc:arx:papers:2405.10498
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.10498
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021. "Deep Neural Networks for Estimation and Inference," Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
    2. Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2020. "Deep Learning for Individual Heterogeneity: An Automatic Inference Framework," Papers 2010.14694, arXiv.org, revised Jul 2021.
    3. Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2016. "Double/Debiased Machine Learning for Treatment and Causal Parameters," Papers 1608.00060, arXiv.org, revised Nov 2024.
    4. Jens Ludwig & Sendhil Mullainathan, 2024. "Machine Learning as a Tool for Hypothesis Generation," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 139(2), pages 751-827.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Mar 2024.
    2. Andrew Bennett & Nathan Kallus & Xiaojie Mao & Whitney Newey & Vasilis Syrgkanis & Masatoshi Uehara, 2022. "Inference on Strongly Identified Functionals of Weakly Identified Functions," Papers 2208.08291, arXiv.org, revised Jun 2023.
    3. Christensen, Peter & Francisco, Paul & Myers, Erica & Shao, Hansen & Souza, Mateus, 2024. "Energy efficiency can deliver for climate policy: Evidence from machine learning-based targeting," Journal of Public Economics, Elsevier, vol. 234(C).
    4. Anna Baiardi & Andrea A Naghi, 2024. "The value added of machine learning to causal inference: evidence from revisited studies," The Econometrics Journal, Royal Economic Society, vol. 27(2), pages 213-234.
    5. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    6. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    7. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    8. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
    9. Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
    10. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    11. Yoganathan, Vignesh & Osburg, Victoria-Sophie, 2024. "The mind in the machine: Estimating mind perception's effect on user satisfaction with voice-based conversational agents," Journal of Business Research, Elsevier, vol. 175(C).
    12. Manuel Arellano & Stéphane Bonhomme & Micole De Vera & Laura Hospido & Siqi Wei, 2022. "Income risk inequality: Evidence from Spanish administrative records," Quantitative Economics, Econometric Society, vol. 13(4), pages 1747-1801, November.
    13. Shi, Chengchun & Zhou, Yunzhe & Li, Lexin, 2023. "Testing directed acyclic graph via structural, supervised and generative adversarial learning," LSE Research Online Documents on Economics 119446, London School of Economics and Political Science, LSE Library.
    14. Waverly Wei & Maya Petersen & Mark J van der Laan & Zeyu Zheng & Chong Wu & Jingshen Wang, 2023. "Efficient targeted learning of heterogeneous treatment effects for multiple subgroups," Biometrics, The International Biometric Society, vol. 79(3), pages 1934-1946, September.
    15. Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022. "Urban economics in a historical perspective: Recovering data with machine learning," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    16. Victor Chernozhukov & Whitney K. Newey & Victor Quintas-Martinez & Vasilis Syrgkanis, 2021. "Automatic Debiased Machine Learning via Riesz Regression," Papers 2104.14737, arXiv.org, revised Mar 2024.
    17. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    18. Andr'es Ram'irez-Hassan & Raquel Vargas-Correa & Gustavo Garc'ia & Daniel Londo~no, 2020. "Optimal selection of the number of control units in kNN algorithm to estimate average treatment effects," Papers 2008.06564, arXiv.org.
    19. Miquel Oliu-Barton & Bary S. R. Pradelski & Nicolas Woloszko & Lionel Guetta-Jeanrenaud & Philippe Aghion & Patrick Artus & Arnaud Fontanet & Philippe Martin & Guntram B. Wolff, 2022. "The effect of COVID certificates on vaccine uptake, health outcomes, and the economy," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    20. Sander Gerritsen & Mark Kattenberg & Sonny Kuijpers, 2019. "The impact of age at arrival on education and mental health," CPB Discussion Paper 389.rdf, CPB Netherlands Bureau for Economic Policy Analysis.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.10498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.