New $\sqrt{n}$-consistent, numerically stable higher-order influence function estimators
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rajarshi Mukherjee & Whitney K. Newey & James Robins, 2017. "Semiparametric efficient empirical higher order influence function estimators," CeMMAP working papers CWP30/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2021.
"Deep Neural Networks for Estimation and Inference,"
Econometrica, Econometric Society, vol. 89(1), pages 181-213, January.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2018. "Deep Neural Networks for Estimation and Inference," Papers 1809.09953, arXiv.org, revised Sep 2019.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2021.
"A unified framework for efficient estimation of general treatment models,"
Quantitative Economics, Econometric Society, vol. 12(3), pages 779-816, July.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2018. "A Unified Framework for Efficient Estimation of General Treatment Models," Papers 1808.04936, arXiv.org, revised Aug 2018.
- Chunrong Ai & Oliver Linton & Kaiji Motegi & Zheng Zhang, 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," CeMMAP working papers CWP64/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Ai, C. & Linton, O. & Motegi, K. & Zhang, Z., 2019. "A Unified Framework for Efficient Estimation of General Treatment Models," Cambridge Working Papers in Economics 1934, Faculty of Economics, University of Cambridge.
- Rajarshi Mukherjee & Whitney K. Newey & James Robins, 2017. "Semiparametric efficient empirical higher order influence function estimators," CeMMAP working papers 30/17, Institute for Fiscal Studies.
- Bhattacharya, Rabi N. & Ghosh, Jayanta K., 1992. "A class of U-statistics and asymptotic normality of the number of k-clusters," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 300-330, November.
- Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015.
"Some new asymptotic theory for least squares series: Pointwise and uniform results,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2012. "Some New Asymptotic Theory for Least Squares Series: Pointwise and Uniform Results," Papers 1212.0442, arXiv.org, revised Jun 2015.
- A Rotnitzky & E Smucler & J M Robins, 2021. "Characterization of parameters with a mixed bias property," Biometrika, Biometrika Trust, vol. 108(1), pages 231-238.
- Newey, Whitney K, 1990. "Semiparametric Efficiency Bounds," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(2), pages 99-135, April-Jun.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Lin & Mukherjee, Rajarshi & Robins, James M., 2024. "Assumption-lean falsification tests of rate double-robustness of double-machine-learning estimators," Journal of Econometrics, Elsevier, vol. 240(2).
- Xingyu Chen & Lin Liu & Rajarshi Mukherjee, 2024. "Method-of-Moments Inference for GLMs and Doubly Robust Functionals under Proportional Asymptotics," Papers 2408.06103, arXiv.org.
- Jikai Jin & Vasilis Syrgkanis, 2024. "Structure-agnostic Optimality of Doubly Robust Learning for Treatment Effect Estimation," Papers 2402.14264, arXiv.org, revised Mar 2024.
- Michael Jansson & Demian Pouzo, 2017.
"Towards a General Large Sample Theory for Regularized Estimators,"
Papers
1712.07248, arXiv.org, revised Jul 2020.
- Michael Jansson & Demian Pouzo, 2019. "Towards a general large sample theory for regularized estimators," CeMMAP working papers CWP63/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Yukitoshi Matsushita & Taisuke Otsu & Keisuke Takahata, 2022. "Estimating density ratio of marginals to joint: Applications to causal inference," STICERD - Econometrics Paper Series 619, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
- Phillip Heiler & Michael C. Knaus, 2021.
"Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments,"
Papers
2110.01427, arXiv.org, revised Aug 2023.
- Heiler, Phillip & Knaus, Michael C., 2022. "Effect or Treatment Heterogeneity? Policy Evaluation with Aggregated and Disaggregated Treatments," IZA Discussion Papers 15580, Institute of Labor Economics (IZA).
- Chen, Xiaohong & Liu, Ying & Ma, Shujie & Zhang, Zheng, 2024. "Causal inference of general treatment effects using neural networks with a diverging number of confounders," Journal of Econometrics, Elsevier, vol. 238(1).
- Kazuhiko Shinoda & Takahiro Hoshino, 2022. "Orthogonal Series Estimation for the Ratio of Conditional Expectation Functions," Papers 2212.13145, arXiv.org.
- Max H. Farrell & Tengyuan Liang & Sanjog Misra, 2020. "Deep Learning for Individual Heterogeneity: An Automatic Inference Framework," Papers 2010.14694, arXiv.org, revised Jul 2021.
- Chunrong Ai & Yue Fang & Haitian Xie, 2024. "Data-driven Policy Learning for Continuous Treatments," Papers 2402.02535, arXiv.org, revised Nov 2024.
- Sihui Zhao & Xinbo Wang & Lin Liu & Xin Zhang, 2024. "Covariate Adjustment in Randomized Experiments Motivated by Higher-Order Influence Functions," Papers 2411.08491, arXiv.org, revised Dec 2024.
- Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Oct 2024.
- Y Cui & E J Tchetgen Tchetgen, 2024. "Selective machine learning of doubly robust functionals," Biometrika, Biometrika Trust, vol. 111(2), pages 517-535.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Xiaohong Chen & Andres Santos, 2018.
"Overidentification in Regular Models,"
Econometrica, Econometric Society, vol. 86(5), pages 1771-1817, September.
- Xiaohong Chen & Andres Santos, 2015. "Overidentification in Regular Models," Cowles Foundation Discussion Papers 1999, Cowles Foundation for Research in Economics, Yale University.
- Xiaohong Chen & Andres Santos, 2015. "Overidentification in Regular Models," Cowles Foundation Discussion Papers 1999R, Cowles Foundation for Research in Economics, Yale University, revised Jun 2018.
- Ichimura, Hidehiko & Todd, Petra E., 2007.
"Implementing Nonparametric and Semiparametric Estimators,"
Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 74,
Elsevier.
- Hidehiko Ichimura & Petra E. Todd, 2006. "Implementing Nonparametric and Semiparametric Estimators," CIRJE F-Series CIRJE-F-452, CIRJE, Faculty of Economics, University of Tokyo.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
- Jelena Bradic & Weijie Ji & Yuqian Zhang, 2021. "High-dimensional Inference for Dynamic Treatment Effects," Papers 2110.04924, arXiv.org, revised May 2023.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2023-04-03 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2302.08097. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.