IDEAS home Printed from https://ideas.repec.org/r/taf/quantf/v19y2019i4p549-570.html
   My bibliography  Save this item

Deep learning for limit order books

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Adam Bouland & Wim van Dam & Hamed Joorati & Iordanis Kerenidis & Anupam Prakash, 2020. "Prospects and challenges of quantum finance," Papers 2011.06492, arXiv.org.
  2. Haochen Li & Yi Cao & Maria Polukarov & Carmine Ventre, 2023. "An Empirical Analysis on Financial Markets: Insights from the Application of Statistical Physics," Papers 2308.14235, arXiv.org, revised Jun 2024.
  3. Erdinc Akyildirim & Oguzhan Cepni & Shaen Corbet & Gazi Salah Uddin, 2023. "Forecasting mid-price movement of Bitcoin futures using machine learning," Annals of Operations Research, Springer, vol. 330(1), pages 553-584, November.
  4. Hwang, Yoontae & Park, Junpyo & Lee, Yongjae & Lim, Dong-Young, 2023. "Stop-loss adjusted labels for machine learning-based trading of risky assets," Finance Research Letters, Elsevier, vol. 58(PA).
  5. Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
  6. Adamantios Ntakaris & Moncef Gabbouj & Juho Kanniainen, 2023. "Optimum Output Long Short-Term Memory Cell for High-Frequency Trading Forecasting," Papers 2304.09840, arXiv.org, revised May 2023.
  7. Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
  8. Jiwon Jung & Kiseop Lee, 2024. "Attention-Based Reading, Highlighting, and Forecasting of the Limit Order Book," Papers 2409.02277, arXiv.org.
  9. Adamantios Ntakaris & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2020. "Mid-price prediction based on machine learning methods with technical and quantitative indicators," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-39, June.
  10. Choi, So Eun & Jang, Hyun Jin & Lee, Kyungsub & Zheng, Harry, 2021. "Optimal market-Making strategies under synchronised order arrivals with deep neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
  11. Jie Chen & Lingfei Li, 2021. "Data-driven Hedging of Stock Index Options via Deep Learning," Papers 2111.03477, arXiv.org.
  12. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.
  13. Ao Kong & Hongliang Zhu & Robert Azencott, 2021. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 416-438, April.
  14. Alexandre Roch, 2023. "Optimal Liquidation Through a Limit Order Book: A Neural Network and Simulation Approach," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-29, March.
  15. Wenyong Zhang & Lingfei Li & Gongqiu Zhang, 2021. "A Two-Step Framework for Arbitrage-Free Prediction of the Implied Volatility Surface," Papers 2106.07177, arXiv.org, revised Jan 2022.
  16. Mostafa Shabani & Dat Thanh Tran & Juho Kanniainen & Alexandros Iosifidis, 2022. "Augmented Bilinear Network for Incremental Multi-Stock Time-Series Classification," Papers 2207.11577, arXiv.org.
  17. Yufei Wu & Mahmoud Mahfouz & Daniele Magazzeni & Manuela Veloso, 2021. "Towards Robust Representation of Limit Orders Books for Deep Learning Models," Papers 2110.05479, arXiv.org, revised Dec 2022.
  18. Fabrizio Lillo, 2021. "Order flow and price formation," Papers 2105.00521, arXiv.org.
  19. Chaeshick Chung & Sukjin Park, 2021. "Deep Learning Market Microstructure: Dual-Stage Attention-Based Recurrent Neural Networks," Working Papers 2108, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
  20. Xianfeng Jiao & Zizhong Li & Chang Xu & Yang Liu & Weiqing Liu & Jiang Bian, 2023. "Microstructure-Empowered Stock Factor Extraction and Utilization," Papers 2308.08135, arXiv.org.
  21. Gao, Xuefeng & Xu, Tianrun, 2022. "Order scoring, bandit learning and order cancellations," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
  22. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "HLOB -- Information Persistence and Structure in Limit Order Books," Papers 2405.18938, arXiv.org, revised Jun 2024.
  23. Andrea Coletta & Joseph Jerome & Rahul Savani & Svitlana Vyetrenko, 2023. "Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness," Papers 2306.12806, arXiv.org.
  24. Luca Grilli & Domenico Santoro, 2022. "Forecasting financial time series with Boltzmann entropy through neural networks," Computational Management Science, Springer, vol. 19(4), pages 665-681, October.
  25. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
  26. Antonio Briola & Jeremy Turiel & Tomaso Aste, 2020. "Deep Learning modeling of Limit Order Book: a comparative perspective," Papers 2007.07319, arXiv.org, revised Oct 2020.
  27. Napoleão Verardi Galegale & Camilo Ilzo Shimabukuro, 2024. "Deep Learning Applied to Stock Prices: Epoch Adjustment in Training an LSTM Neural Network," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(4), pages 1-80, July.
  28. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
  29. Schnaubelt, Matthias, 2020. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," FAU Discussion Papers in Economics 05/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
  30. Ye-Sheen Lim & Denise Gorse, 2020. "Deep Probabilistic Modelling of Price Movements for High-Frequency Trading," Papers 2004.01498, arXiv.org.
  31. Xuan Tao & Andrew Day & Lan Ling & Samuel Drapeau, 2020. "On Detecting Spoofing Strategies in High Frequency Trading," Papers 2009.14818, arXiv.org, revised Dec 2020.
  32. Martin Magris & Mostafa Shabani & Alexandros Iosifidis, 2022. "Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics in Limit-Order Book Markets," Papers 2203.03613, arXiv.org, revised Jan 2023.
  33. Yufei Wu & Mahmoud Mahfouz & Daniele Magazzeni & Manuela Veloso, 2021. "How Robust are Limit Order Book Representations under Data Perturbation?," Papers 2110.04752, arXiv.org.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.