IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.12806.html
   My bibliography  Save this paper

Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness

Author

Listed:
  • Andrea Coletta
  • Joseph Jerome
  • Rahul Savani
  • Svitlana Vyetrenko

Abstract

Limit order books are a fundamental and widespread market mechanism. This paper investigates the use of conditional generative models for order book simulation. For developing a trading agent, this approach has drawn recent attention as an alternative to traditional backtesting due to its ability to react to the presence of the trading agent. Using a state-of-the-art CGAN (from Coletta et al. (2022)), we explore its dependence upon input features, which highlights both strengths and weaknesses. To do this, we use "adversarial attacks" on the model's features and its mechanism. We then show how these insights can be used to improve the CGAN, both in terms of its realism and robustness. We finish by laying out a roadmap for future work.

Suggested Citation

  • Andrea Coletta & Joseph Jerome & Rahul Savani & Svitlana Vyetrenko, 2023. "Conditional Generators for Limit Order Book Environments: Explainability, Challenges, and Robustness," Papers 2306.12806, arXiv.org.
  • Handle: RePEc:arx:papers:2306.12806
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.12806
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.
    2. Holthausen, Robert W. & Leftwich, Richard W. & Mayers, David, 1990. "Large-block transactions, the speed of response, and temporary and permanent stock-price effects," Journal of Financial Economics, Elsevier, vol. 26(1), pages 71-95, July.
    3. Yufei Wu & Mahmoud Mahfouz & Daniele Magazzeni & Manuela Veloso, 2021. "Towards Robust Representation of Limit Orders Books for Deep Learning Models," Papers 2110.05479, arXiv.org, revised Dec 2022.
    4. Platt, Donovan, 2020. "A comparison of economic agent-based model calibration methods," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    5. Donovan Platt & Tim Gebbie, 2016. "The Problem of Calibrating an Agent-Based Model of High-Frequency Trading," Papers 1606.01495, arXiv.org, revised Mar 2017.
    6. Justin A. Sirignano, 2019. "Deep learning for limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 549-570, April.
    7. Tucker Hybinette Balch & Mahmoud Mahfouz & Joshua Lockhart & Maria Hybinette & David Byrd, 2019. "How to Evaluate Trading Strategies: Single Agent Market Replay or Multiple Agent Interactive Simulation?," Papers 1906.12010, arXiv.org.
    8. Hautsch, Nikolaus & Huang, Ruihong, 2012. "The market impact of a limit order," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 501-522.
    9. Zijian Shi & John Cartlidge, 2023. "Neural Stochastic Agent-Based Limit Order Book Simulation: A Hybrid Methodology," Papers 2303.00080, arXiv.org.
    10. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    11. Andrea Coletta & Matteo Prata & Michele Conti & Emanuele Mercanti & Novella Bartolini & Aymeric Moulin & Svitlana Vyetrenko & Tucker Balch, 2021. "Towards Realistic Market Simulations: a Generative Adversarial Networks Approach," Papers 2110.13287, arXiv.org.
    12. repec:hal:spmain:info:hdl:2441/13thfd12aa8rmplfudlgvgahff is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamza Bodor & Laurent Carlier, 2024. "A Novel Approach to Queue-Reactive Models: The Importance of Order Sizes," Papers 2405.18594, arXiv.org.
    2. Vamsi K. Potluru & Daniel Borrajo & Andrea Coletta & Niccol`o Dalmasso & Yousef El-Laham & Elizabeth Fons & Mohsen Ghassemi & Sriram Gopalakrishnan & Vikesh Gosai & Eleonora Kreav{c}i'c & Ganapathy Ma, 2023. "Synthetic Data Applications in Finance," Papers 2401.00081, arXiv.org, revised Mar 2024.
    3. Yu-Hao Huang & Chang Xu & Yang Liu & Weiqing Liu & Wu-Jun Li & Jiang Bian, 2024. "Controllable Financial Market Generation with Diffusion Guided Meta Agent," Papers 2408.12991, arXiv.org, revised Sep 2024.
    4. Jian Guo & Heung-Yeung Shum, 2024. "Large Investment Model," Papers 2408.10255, arXiv.org, revised Aug 2024.
    5. Song Wei & Andrea Coletta & Svitlana Vyetrenko & Tucker Balch, 2023. "INTAGS: Interactive Agent-Guided Simulation," Papers 2309.01784, arXiv.org, revised Nov 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrei I. Vlad & Alexei A. Romanyukha & Tatiana E. Sannikova, 2024. "Parameter Tuning of Agent-Based Models: Metaheuristic Algorithms," Mathematics, MDPI, vol. 12(14), pages 1-21, July.
    2. Zila, Eric & Kukacka, Jiri, 2023. "Moment set selection for the SMM using simple machine learning," Journal of Economic Behavior & Organization, Elsevier, vol. 212(C), pages 366-391.
    3. Donovan Platt, 2022. "Bayesian Estimation of Economic Simulation Models Using Neural Networks," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 599-650, February.
    4. Chenkai Wang & Junji Ren & Peng Yang, 2024. "Alleviating Non-identifiability: a High-fidelity Calibration Objective for Financial Market Simulation with Multivariate Time Series Data," Papers 2407.16566, arXiv.org, revised Oct 2024.
    5. Andrea Coletta & Aymeric Moulin & Svitlana Vyetrenko & Tucker Balch, 2022. "Learning to simulate realistic limit order book markets from data as a World Agent," Papers 2210.09897, arXiv.org.
    6. Kukacka, Jiri & Kristoufek, Ladislav, 2021. "Does parameterization affect the complexity of agent-based models?," Journal of Economic Behavior & Organization, Elsevier, vol. 192(C), pages 324-356.
    7. Matteo Prata & Giuseppe Masi & Leonardo Berti & Viviana Arrigoni & Andrea Coletta & Irene Cannistraci & Svitlana Vyetrenko & Paola Velardi & Novella Bartolini, 2023. "LOB-Based Deep Learning Models for Stock Price Trend Prediction: A Benchmark Study," Papers 2308.01915, arXiv.org, revised Sep 2023.
    8. Noemi Schmitt & Ivonne Schwartz & Frank Westerhoff, 2022. "Heterogeneous speculators and stock market dynamics: a simple agent-based computational model," The European Journal of Finance, Taylor & Francis Journals, vol. 28(13-15), pages 1263-1282, October.
    9. Song Wei & Andrea Coletta & Svitlana Vyetrenko & Tucker Balch, 2023. "INTAGS: Interactive Agent-Guided Simulation," Papers 2309.01784, arXiv.org, revised Nov 2023.
    10. Dominic Bauer & Derick Diana & Tim Gebbie, 2024. "Correlation emergence in two coupled simulated limit order books," Papers 2408.03181, arXiv.org.
    11. Siyan Chen & Saul Desiderio, 2022. "Calibration of Agent-Based Models by Means of Meta-Modeling and Nonparametric Regression," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1457-1478, December.
    12. Shiono, Takashi, 2021. "Estimation of agent-based models using Bayesian deep learning approach of BayesFlow," Journal of Economic Dynamics and Control, Elsevier, vol. 125(C).
    13. Fabrizio Pomponio & Frédéric Abergel, 2013. "Multiple-limit trades : empirical facts and application to lead-lag measures," Post-Print hal-00745317, HAL.
    14. Sun, Yuxin & Ibikunle, Gbenga, 2017. "Informed trading and the price impact of block trades: A high frequency trading analysis," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 114-129.
    15. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    16. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    17. Hong, Harrison & Rady, Sven, 2002. "Strategic trading and learning about liquidity," Journal of Financial Markets, Elsevier, vol. 5(4), pages 419-450, October.
    18. Antonio Briola & Jeremy Turiel & Riccardo Marcaccioli & Alvaro Cauderan & Tomaso Aste, 2021. "Deep Reinforcement Learning for Active High Frequency Trading," Papers 2101.07107, arXiv.org, revised Aug 2023.
    19. Johannes Dahlke & Kristina Bogner & Matthias Mueller & Thomas Berger & Andreas Pyka & Bernd Ebersberger, 2020. "Is the Juice Worth the Squeeze? Machine Learning (ML) In and For Agent-Based Modelling (ABM)," Papers 2003.11985, arXiv.org.
    20. Baruch, Shmuel & Panayides, Marios & Venkataraman, Kumar, 2017. "Informed trading and price discovery before corporate events," Journal of Financial Economics, Elsevier, vol. 125(3), pages 561-588.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.12806. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.