IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i3p1189-1205.html
   My bibliography  Save this article

Short-term stock price trend prediction with imaging high frequency limit order book data

Author

Listed:
  • Ye, Wuyi
  • Yang, Jinting
  • Chen, Pengzhan

Abstract

Predicting price movements over a short period is a challenging problem in high-frequency trading. Deep learning methods have recently been used to forecast short-term prices via limit order book (LOB) data. In this paper, we propose a framework to convert LOB data into a series of standard images in 2D matrices and predict the mid-price movements via an image-based convolutional neural network (CNN). The empirical study shows that the image-based CNN model outperforms other traditional machine learning and deep learning methods based on raw LOB data. Our findings suggest that the additional information implicit in LOB images contributes to short-term price forecasting.

Suggested Citation

  • Ye, Wuyi & Yang, Jinting & Chen, Pengzhan, 2024. "Short-term stock price trend prediction with imaging high frequency limit order book data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1189-1205.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:3:p:1189-1205
    DOI: 10.1016/j.ijforecast.2023.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023001073
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:3:p:1189-1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.