IDEAS home Printed from https://ideas.repec.org/a/ibn/ijbmjn/v19y2024i4p80.html
   My bibliography  Save this article

Deep Learning Applied to Stock Prices: Epoch Adjustment in Training an LSTM Neural Network

Author

Listed:
  • Napoleão Verardi Galegale
  • Camilo Ilzo Shimabukuro

Abstract

Research on recurrent neural networks applied to financial time series is still underexplored, even more so for series on Brazilian stock prices. The research gap was identified in studies on regularization with early stopping to improve predictive capacity and reduce overfitting for the type of neural network used. This study aims to analyze the effect of the number of epochs on the prediction error dispersion of a recurrent neural network using the Long Short-Term Memory – LSTM approach on the stock prices of a Brazilian company, aiming to minimize prediction error and reduce the risk of overfitting. The method is of an applied nature with a quantitative approach and uses an experimental procedure to analyze the behavior of the prediction error of a recurrent neural network as a function of the number of epochs. As a result, a range of the number of epochs was identified that extracts the best trade-off relation between predictive capacity and overfitting risk for a given network configuration. It was also identified how the dispersion of prediction error initially declines sharply and then stabilizes asymptotically. The study offers a greater understanding of the behavior of the prediction error, seeking greater efficiency in predictive techniques on financial time series in order to add value and reduce uncertainties in the decision-making process for asset managers and investors.

Suggested Citation

  • Napoleão Verardi Galegale & Camilo Ilzo Shimabukuro, 2024. "Deep Learning Applied to Stock Prices: Epoch Adjustment in Training an LSTM Neural Network," International Journal of Business and Management, Canadian Center of Science and Education, vol. 19(4), pages 1-80, July.
  • Handle: RePEc:ibn:ijbmjn:v:19:y:2024:i:4:p:80
    as

    Download full text from publisher

    File URL: https://ccsenet.org/journal/index.php/ijbm/article/download/0/0/50304/54461
    Download Restriction: no

    File URL: https://ccsenet.org/journal/index.php/ijbm/article/view/0/50304
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shiller, Robert J, 1995. "Conversation, Information, and Herd Behavior," American Economic Review, American Economic Association, vol. 85(2), pages 181-185, May.
    2. Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
    3. Justin A. Sirignano, 2019. "Deep learning for limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 549-570, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
    2. Adamantios Ntakaris & Moncef Gabbouj & Juho Kanniainen, 2023. "Optimum Output Long Short-Term Memory Cell for High-Frequency Trading Forecasting," Papers 2304.09840, arXiv.org, revised May 2023.
    3. Wei Dai & Yuan An & Wen Long, 2021. "Price change prediction of ultra high frequency financial data based on temporal convolutional network," Papers 2107.00261, arXiv.org.
    4. Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
    5. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    6. Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
    7. Wang, Jianzhou & Lv, Mengzheng & Wang, Shuai & Gao, Jialu & Zhao, Yang & Wang, Qiangqiang, 2024. "Can multi-period auto-portfolio systems improve returns? Evidence from Chinese and U.S. stock markets," International Review of Financial Analysis, Elsevier, vol. 95(PB).
    8. Ghosh, Indranil & Chaudhuri, Tamal Datta & Alfaro-Cortés, Esteban & Gámez, Matías & García, Noelia, 2022. "A hybrid approach to forecasting futures prices with simultaneous consideration of optimality in ensemble feature selection and advanced artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 181(C).
    9. Edouard Civel & Marc Baudry, 2018. "The Fate of Inventions. What can we learn from Bayesian learning in strategic options model of adoption ?," EconomiX Working Papers 2018-47, University of Paris Nanterre, EconomiX.
    10. Sina Montazeri & Akram Mirzaeinia & Haseebullah Jumakhan & Amir Mirzaeinia, 2024. "CNN-DRL for Scalable Actions in Finance," Papers 2401.06179, arXiv.org.
    11. Jiwon Jung & Kiseop Lee, 2024. "Attention-Based Reading, Highlighting, and Forecasting of the Limit Order Book," Papers 2409.02277, arXiv.org, revised Nov 2024.
    12. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    13. Bartosz Bieganowski & Robert 'Slepaczuk, 2024. "Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data," Papers 2411.12753, arXiv.org, revised Nov 2024.
    14. He, Xue-Zhong & Li, Kai & Santi, Caterina & Shi, Lei, 2022. "Social interaction, volatility clustering, and momentum," Journal of Economic Behavior & Organization, Elsevier, vol. 203(C), pages 125-149.
    15. Rad, Hossein & Low, Rand Kwong Yew & Miffre, Joëlle & Faff, Robert, 2023. "The commodity risk premium and neural networks," Journal of Empirical Finance, Elsevier, vol. 74(C).
    16. Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
    17. Puput Tri Komalasari & Marwan Asri & Bernardinus M. Purwanto & Bowo Setiyono, 2022. "Herding behaviour in the capital market: What do we know and what is next?," Management Review Quarterly, Springer, vol. 72(3), pages 745-787, September.
    18. Mst. Shapna Akter & Hossain Shahriar & Reaz Chowdhury & M. R. C. Mahdy, 2022. "Forecasting the Risk Factor of Frontier Markets: A Novel Stacking Ensemble of Neural Network Approach," Future Internet, MDPI, vol. 14(9), pages 1-23, August.
    19. Noura Metawa & Mohamemd I. Alghamdi & Ibrahim M. El-Hasnony & Mohamed Elhoseny, 2021. "Return Rate Prediction in Blockchain Financial Products Using Deep Learning," Sustainability, MDPI, vol. 13(21), pages 1-16, October.
    20. Antonio Briola & Silvia Bartolucci & Tomaso Aste, 2024. "Deep Limit Order Book Forecasting," Papers 2403.09267, arXiv.org, revised Jun 2024.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijbmjn:v:19:y:2024:i:4:p:80. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.