IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v58y2023ipas1544612323006578.html
   My bibliography  Save this article

Stop-loss adjusted labels for machine learning-based trading of risky assets

Author

Listed:
  • Hwang, Yoontae
  • Park, Junpyo
  • Lee, Yongjae
  • Lim, Dong-Young

Abstract

Since the rise of ML/AI, many researchers and practitioners have been trying to predict future stock price movements. In actual implementations, however, stop-loss is widely adopted to manage risks, which sells an asset if its price goes below a predetermined level. Hence, some buy signals from prediction models could be wasted if stop-loss is triggered. In this study, we propose a stop-loss adjusted labeling scheme to reduce the discrepancy between prediction and decision making. It can be easily incorporated to any ML/AI prediction models. Experimental results on U.S. futures and cryptocurrencies show that this simple tweak significantly reduces risk.

Suggested Citation

  • Hwang, Yoontae & Park, Junpyo & Lee, Yongjae & Lim, Dong-Young, 2023. "Stop-loss adjusted labels for machine learning-based trading of risky assets," Finance Research Letters, Elsevier, vol. 58(PA).
  • Handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323006578
    DOI: 10.1016/j.frl.2023.104285
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612323006578
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.frl.2023.104285?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    2. Geonhwan Ju & Kyoung-Kuk Kim & Dong-Young Lim, 2019. "Learning multi-market microstructure from order book data," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1517-1529, September.
    3. Jinan Liu & Apostolos Serletis, 2019. "Volatility in the Cryptocurrency Market," Open Economies Review, Springer, vol. 30(4), pages 779-811, September.
    4. Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
    5. Gonçalves, Rui & Ribeiro, Vitor Miguel & Pereira, Fernando Lobo & Rocha, Ana Paula, 2019. "Deep learning in exchange markets," Information Economics and Policy, Elsevier, vol. 47(C), pages 38-51.
    6. Jinan Liu & Apostolos Serletis, 2019. "Volatility in the Cryptocurrency Market," Open Economies Review, Springer, vol. 30(4), pages 779-811, September.
    7. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    8. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    9. Santos, André A.P. & Torrent, Hudson S., 2022. "Markowitz meets technical analysis: Building optimal portfolios by exploiting information in trend-following signals," Finance Research Letters, Elsevier, vol. 49(C).
    10. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    11. Fuli Feng & Huimin Chen & Xiangnan He & Ji Ding & Maosong Sun & Tat-Seng Chua, 2018. "Enhancing Stock Movement Prediction with Adversarial Training," Papers 1810.09936, arXiv.org, revised Jun 2019.
    12. Jegadeesh, Narasimhan, 1991. "Seasonality in Stock Price Mean Reversion: Evidence from the U.S. and the U.K," Journal of Finance, American Finance Association, vol. 46(4), pages 1427-1444, September.
    13. Wei-Chang Yeh & Yu-Hsin Hsieh & Chia-Ling Huang, 2022. "Newly Developed Flexible Grid Trading Model Combined ANN and SSO algorithm," Papers 2211.12839, arXiv.org.
    14. Kaminski, Kathryn M. & Lo, Andrew W., 2014. "When do stop-loss rules stop losses?," Journal of Financial Markets, Elsevier, vol. 18(C), pages 234-254.
    15. Ghosh, Pushpendu & Neufeld, Ariel & Sahoo, Jajati Keshari, 2022. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Finance Research Letters, Elsevier, vol. 46(PA).
    16. Justin A. Sirignano, 2019. "Deep learning for limit order books," Quantitative Finance, Taylor & Francis Journals, vol. 19(4), pages 549-570, April.
    17. Bochuan Dai & Ben R. Marshall & Nhut H. Nguyen & Nuttawat Visaltanachoti, 2021. "Risk reduction using trailing stop‐loss rules," International Review of Finance, International Review of Finance Ltd., vol. 21(4), pages 1334-1352, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang, Yi & Chen, Yuzhi & Ren, Hang, 2023. "A factor pricing model based on machine learning algorithm," International Review of Economics & Finance, Elsevier, vol. 88(C), pages 280-297.
    2. Goodell, John W. & Kumar, Satish & Lim, Weng Marc & Pattnaik, Debidutta, 2021. "Artificial intelligence and machine learning in finance: Identifying foundations, themes, and research clusters from bibliometric analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 32(C).
    3. Evangelos Liaras & Michail Nerantzidis & Antonios Alexandridis, 2024. "Machine learning in accounting and finance research: a literature review," Review of Quantitative Finance and Accounting, Springer, vol. 63(4), pages 1431-1471, November.
    4. Cakici, Nusret & Zaremba, Adam, 2021. "Liquidity and the cross-section of international stock returns," Journal of Banking & Finance, Elsevier, vol. 127(C).
    5. Andrés Alonso Robisco & José Manuel Carbó Martínez, 2022. "Measuring the model risk-adjusted performance of machine learning algorithms in credit default prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-35, December.
    6. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    7. Chaeshick Chung & Sukjin Park, 2021. "Deep Learning Market Microstructure: Dual-Stage Attention-Based Recurrent Neural Networks," Working Papers 2108, Nam Duck-Woo Economic Research Institute, Sogang University (Former Research Institute for Market Economy).
    8. Kristof Lommers & Ouns El Harzli & Jack Kim, 2021. "Confronting Machine Learning With Financial Research," Papers 2103.00366, arXiv.org, revised Mar 2021.
    9. Ramit Sawhney & Shivam Agarwal & Vivek Mittal & Paolo Rosso & Vikram Nanda & Sudheer Chava, 2022. "Cryptocurrency Bubble Detection: A New Stock Market Dataset, Financial Task & Hyperbolic Models," Papers 2206.06320, arXiv.org.
    10. Ngo, Vu Minh & Nguyen, Huan Huu & Van Nguyen, Phuc, 2023. "Does reinforcement learning outperform deep learning and traditional portfolio optimization models in frontier and developed financial markets?," Research in International Business and Finance, Elsevier, vol. 65(C).
    11. Žikica Lukić & Bojana Milošević, 2024. "A novel two-sample test within the space of symmetric positive definite matrix distributions and its application in finance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 76(5), pages 797-820, October.
    12. Eghbal Rahimikia & Stefan Zohren & Ser-Huang Poon, 2021. "Realised Volatility Forecasting: Machine Learning via Financial Word Embedding," Papers 2108.00480, arXiv.org, revised Nov 2024.
    13. Goodell, John W. & Ben Jabeur, Sami & Saâdaoui, Foued & Nasir, Muhammad Ali, 2023. "Explainable artificial intelligence modeling to forecast bitcoin prices," International Review of Financial Analysis, Elsevier, vol. 88(C).
    14. Tran, Vu Le, 2023. "Sentiment and covariance characteristics," International Review of Financial Analysis, Elsevier, vol. 86(C).
    15. Doron Avramov & Guy Kaplanski & Avanidhar Subrahmanyam, 2022. "Postfundamentals Price Drift in Capital Markets: A Regression Regularization Perspective," Management Science, INFORMS, vol. 68(10), pages 7658-7681, October.
    16. Pedro M. Mirete-Ferrer & Alberto Garcia-Garcia & Juan Samuel Baixauli-Soler & Maria A. Prats, 2022. "A Review on Machine Learning for Asset Management," Risks, MDPI, vol. 10(4), pages 1-46, April.
    17. Tobek, Ondrej & Hronec, Martin, 2021. "Does it pay to follow anomalies research? Machine learning approach with international evidence," Journal of Financial Markets, Elsevier, vol. 56(C).
    18. Blanco, Ivan & De Jesus, Miguel & Remesal, Alvaro, 2023. "Overlapping momentum portfolios," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 1-22.
    19. Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
    20. Bui, Dien Giau & Kong, De-Rong & Lin, Chih-Yung & Lin, Tse-Chun, 2023. "Momentum in machine learning: Evidence from the Taiwan stock market," Pacific-Basin Finance Journal, Elsevier, vol. 82(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:58:y:2023:i:pa:s1544612323006578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/frl .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.