My bibliography
Save this item
Semidefinite Programming Relaxations for the Quadratic Assignment Problem
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
- F. Rendl, 2016. "Semidefinite relaxations for partitioning, assignment and ordering problems," Annals of Operations Research, Springer, vol. 240(1), pages 119-140, May.
- Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.
- Sungwoo Park & Dianne P. O’Leary, 2015. "A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 558-571, August.
- de Klerk, E. & Sotirov, R., 2007.
"Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem,"
Discussion Paper
2007-44, Tilburg University, Center for Economic Research.
- de Klerk, E. & Sotirov, R., 2010. "Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem," Other publications TiSEM 73287c80-3bc2-40c4-b02d-4, Tilburg University, School of Economics and Management.
- de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Other publications TiSEM 87a5d126-86e5-4863-8ea5-1, Tilburg University, School of Economics and Management.
- José F. S. Bravo Ferreira & Yuehaw Khoo & Amit Singer, 2018. "Semidefinite programming approach for the quadratic assignment problem with a sparse graph," Computational Optimization and Applications, Springer, vol. 69(3), pages 677-712, April.
- Dobre, C., 2011. "Semidefinite programming approaches for structured combinatorial optimization problems," Other publications TiSEM e1ec09bd-b024-4dec-acad-7, Tilburg University, School of Economics and Management.
- Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007.
"On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96),"
Other publications TiSEM
12999d3d-956a-4660-9ae4-5, Tilburg University, School of Economics and Management.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
- Samuel Burer & Kyungchan Park, 2024. "A Strengthened SDP Relaxation for Quadratic Optimization Over the Stiefel Manifold," Journal of Optimization Theory and Applications, Springer, vol. 202(1), pages 320-339, July.
- Wolkowicz, Henry, 2002. "A note on lack of strong duality for quadratic problems with orthogonal constraints," European Journal of Operational Research, Elsevier, vol. 143(2), pages 356-364, December.
- E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
- van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
- Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2023. "Exact SDP relaxations for quadratic programs with bipartite graph structures," Journal of Global Optimization, Springer, vol. 86(3), pages 671-691, July.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008.
"On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101),"
Discussion Paper
2008-96, Tilburg University, Center for Economic Research.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Other publications TiSEM ea23cd70-a3b1-401a-aa3f-0, Tilburg University, School of Economics and Management.
- Hu, Hao, 2019. "The quadratic shortest path problem : Theory and computations," Other publications TiSEM 2affb54f-da41-461b-9782-d, Tilburg University, School of Economics and Management.
- Naomi Graham & Hao Hu & Jiyoung Im & Xinxin Li & Henry Wolkowicz, 2022. "A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2125-2143, July.
- de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
- Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
- Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
- Brosch, Daniel & de Klerk, Etienne, 2021. "Jordan symmetry reduction for conic optimization over the doubly nonnegative cone: Theory and software," Other publications TiSEM 283da78a-b42f-47b4-b2b7-2, Tilburg University, School of Economics and Management.
- Levent Tunçel & Henry Wolkowicz, 2012. "Strong duality and minimal representations for cone optimization," Computational Optimization and Applications, Springer, vol. 53(2), pages 619-648, October.
- Klerk, Etienne de, 2010. "Exploiting special structure in semidefinite programming: A survey of theory and applications," European Journal of Operational Research, Elsevier, vol. 201(1), pages 1-10, February.
- Yichuan Ding & Dongdong Ge & Henry Wolkowicz, 2011. "On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 88-104, February.
- Fanz Rendl & Renata Sotirov, 2018. "The min-cut and vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 159-187, January.
- E. R. van Dam & R. Sotirov, 2015.
"On Bounding the Bandwidth of Graphs with Symmetry,"
INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
- van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
- Vivek Bagaria & Jian Ding & David Tse & Yihong Wu & Jiaming Xu, 2020. "Hidden Hamiltonian Cycle Recovery via Linear Programming," Operations Research, INFORMS, vol. 68(1), pages 53-70, January.
- Forbes Burkowski & Yuen-Lam Cheung & Henry Wolkowicz, 2014. "Efficient Use of Semidefinite Programming for Selection of Rotamers in Protein Conformations," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 748-766, November.
- Boukouvala, Fani & Misener, Ruth & Floudas, Christodoulos A., 2016. "Global optimization advances in Mixed-Integer Nonlinear Programming, MINLP, and Constrained Derivative-Free Optimization, CDFO," European Journal of Operational Research, Elsevier, vol. 252(3), pages 701-727.
- Renata Sotirov, 2014. "An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 16-30, February.
- Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
- Yong Xia & Wajeb Gharibi, 2015. "On improving convex quadratic programming relaxation for the quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 647-667, October.
- Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.
- Xinxin Li & Ting Kei Pong & Hao Sun & Henry Wolkowicz, 2021. "A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 853-891, April.
- Zhuoxuan Jiang & Xinyuan Zhao & Chao Ding, 2021. "A proximal DC approach for quadratic assignment problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 825-851, April.