Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Other publications TiSEM 87a5d126-86e5-4863-8ea5-1, Tilburg University, School of Economics and Management.
- de Klerk, E. & Sotirov, R., 2010. "Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem," Other publications TiSEM 73287c80-3bc2-40c4-b02d-4, Tilburg University, School of Economics and Management.
References listed on IDEAS
- Ivanov, I.D. & de Klerk, E., 2007. "Parallel Implementation of a Semidefinite Programming Solver based on CSDP in a distributed memory cluster," Other publications TiSEM 9b41ff5e-2808-4d12-a58c-0, Tilburg University, School of Economics and Management.
- de Klerk, E. & Maharry, J. & Pasechnik, D.V. & Richter, B. & Salazar, G., 2006. "Improved bounds for the crossing numbers of Km,n and Kn," Other publications TiSEM eca87811-247d-489f-89c2-c, Tilburg University, School of Economics and Management.
- Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
- de Klerk, E. & Pasechnik, D.V. & Schrijver, A., 2007. "Reduction of symmetric semidefinite programs using the regular*-representation," Other publications TiSEM e418158e-b9dd-4372-b84c-e, Tilburg University, School of Economics and Management.
- Rendl, F. & Sotirov, R., 2007. "Bounds for the quadratic assignment problem using the bundle method," Other publications TiSEM b6d298bc-77c9-4a6d-a043-5, Tilburg University, School of Economics and Management.
- Ivanov, I.D. & de Klerk, E., 2007. "Parallel Implementation of a Semidefinite Programming Solver based on CSDP in a distributed memory cluster," Discussion Paper 2007-20, Tilburg University, Center for Economic Research.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
- José F. S. Bravo Ferreira & Yuehaw Khoo & Amit Singer, 2018. "Semidefinite programming approach for the quadratic assignment problem with a sparse graph," Computational Optimization and Applications, Springer, vol. 69(3), pages 677-712, April.
- Samuel Burer & Sunyoung Kim & Masakazu Kojima, 2014. "Faster, but weaker, relaxations for quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 59(1), pages 27-45, October.
- Feizollahi, Mohammad Javad & Feyzollahi, Hadi, 2015. "Robust quadratic assignment problem with budgeted uncertain flows," Operations Research Perspectives, Elsevier, vol. 2(C), pages 114-123.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007.
"On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96),"
Other publications TiSEM
12999d3d-956a-4660-9ae4-5, Tilburg University, School of Economics and Management.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
- E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
- van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008.
"On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101),"
Discussion Paper
2008-96, Tilburg University, Center for Economic Research.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Other publications TiSEM ea23cd70-a3b1-401a-aa3f-0, Tilburg University, School of Economics and Management.
- Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.
- de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
- Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
- Brosch, Daniel & de Klerk, Etienne, 2021. "Jordan symmetry reduction for conic optimization over the doubly nonnegative cone: Theory and software," Other publications TiSEM 283da78a-b42f-47b4-b2b7-2, Tilburg University, School of Economics and Management.
- Matteo Fischetti & Michele Monaci & Domenico Salvagnin, 2012. "Three Ideas for the Quadratic Assignment Problem," Operations Research, INFORMS, vol. 60(4), pages 954-964, August.
- Yichuan Ding & Dongdong Ge & Henry Wolkowicz, 2011. "On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 88-104, February.
- Fanz Rendl & Renata Sotirov, 2018. "The min-cut and vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 159-187, January.
- E. R. van Dam & R. Sotirov, 2015.
"On Bounding the Bandwidth of Graphs with Symmetry,"
INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
- van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
- Xiaolong Kuang & Bissan Ghaddar & Joe Naoum-Sawaya & Luis F. Zuluaga, 2019. "Alternative SDP and SOCP approximations for polynomial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 153-175, June.
- Nyberg, Axel & Westerlund, Tapio, 2012. "A new exact discrete linear reformulation of the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 314-319.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Klerk, Etienne de, 2010. "Exploiting special structure in semidefinite programming: A survey of theory and applications," European Journal of Operational Research, Elsevier, vol. 201(1), pages 1-10, February.
- Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
- F. Rendl, 2016. "Semidefinite relaxations for partitioning, assignment and ordering problems," Annals of Operations Research, Springer, vol. 240(1), pages 119-140, May.
- Bai, Y.Q. & de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007.
"Exploiting Group Symmetry in Truss Topology Optimization,"
Discussion Paper
2007-17, Tilburg University, Center for Economic Research.
- Bai, Y.Q. & de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "Exploiting Group Symmetry in Truss Topology Optimization," Other publications TiSEM ae445f38-3207-4ae5-9185-1, Tilburg University, School of Economics and Management.
- Thorsten Koch & Ted Ralphs & Yuji Shinano, 2012. "Could we use a million cores to solve an integer program?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(1), pages 67-93, August.
- Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.
- E. R. van Dam & R. Sotirov, 2015.
"On Bounding the Bandwidth of Graphs with Symmetry,"
INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
- van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
- Naomi Graham & Hao Hu & Jiyoung Im & Xinxin Li & Henry Wolkowicz, 2022. "A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2125-2143, July.
- Zhuoxuan Jiang & Xinyuan Zhao & Chao Ding, 2021. "A proximal DC approach for quadratic assignment problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 825-851, April.
- Dobre, C., 2011. "Semidefinite programming approaches for structured combinatorial optimization problems," Other publications TiSEM e1ec09bd-b024-4dec-acad-7, Tilburg University, School of Economics and Management.
- Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
- Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
- de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
- N. Ito & S. Kim & M. Kojima & A. Takeda & K.-C. Toh, 2018. "Equivalences and differences in conic relaxations of combinatorial quadratic optimization problems," Journal of Global Optimization, Springer, vol. 72(4), pages 619-653, December.
- Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2023. "Exact SDP relaxations for quadratic programs with bipartite graph structures," Journal of Global Optimization, Springer, vol. 86(3), pages 671-691, July.
- Papp, Dávid & Regős, Krisztina & Domokos, Gábor & Bozóki, Sándor, 2023. "The smallest mono-unstable convex polyhedron with point masses has 8 faces and 11 vertices," European Journal of Operational Research, Elsevier, vol. 310(2), pages 511-517.
- Yichuan Ding & Dongdong Ge & Henry Wolkowicz, 2011. "On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 88-104, February.
- Yong Xia & Wajeb Gharibi, 2015. "On improving convex quadratic programming relaxation for the quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 647-667, October.
- de Klerk, E. & Pasechnik, D.V., 2007. "A linear programming reformulation of the standard quadratic optimization problem," Other publications TiSEM c3e74115-b343-4a85-976b-8, Tilburg University, School of Economics and Management.
- Cordian Riener & Thorsten Theobald & Lina Jansson Andrén & Jean B. Lasserre, 2013. "Exploiting Symmetries in SDP-Relaxations for Polynomial Optimization," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 122-141, February.
More about this item
Keywords
quadratic assignment problem; semidefinite programming; group sym- metry;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiucen:87a5d126-86e5-4863-8ea5-1a76fc5f25e7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: http://center.uvt.nl .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.