IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v240y2016i1d10.1007_s10479-015-2015-1.html
   My bibliography  Save this article

Semidefinite relaxations for partitioning, assignment and ordering problems

Author

Listed:
  • F. Rendl

    (Alpen-Adria Universität Klagenfurt)

Abstract

Semidefinite optimization is a strong tool in the study of NP-hard combinatorial optimization problems. On the one hand, semidefinite optimization problems are in principle solvable in polynomial time (with fixed precision), on the other hand, their modeling power allows to naturally handle quadratic constraints. Contrary to linear optimization with the efficiency of the Simplex method, the algorithmic treatment of semidefinite problems is much more subtle and also practically quite expensive. This survey-type article is meant as an introduction for a non-expert to this exciting area. The basic concepts are explained on a mostly intuitive level, and pointers to advanced topics are given. We provide a variety of semidefinite optimization models on a selection of graph optimization problems and give a flavour of their practical impact.

Suggested Citation

  • F. Rendl, 2016. "Semidefinite relaxations for partitioning, assignment and ordering problems," Annals of Operations Research, Springer, vol. 240(1), pages 119-140, May.
  • Handle: RePEc:spr:annopr:v:240:y:2016:i:1:d:10.1007_s10479-015-2015-1
    DOI: 10.1007/s10479-015-2015-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-2015-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-2015-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rendl, F. & Sotirov, R., 2007. "Bounds for the quadratic assignment problem using the bundle method," Other publications TiSEM b6d298bc-77c9-4a6d-a043-5, Tilburg University, School of Economics and Management.
    2. Francisco Barahona & Martin Grötschel & Ali Ridha Mahjoub, 1985. "Facets of the Bipartite Subgraph Polytope," Mathematics of Operations Research, INFORMS, vol. 10(2), pages 340-358, May.
    3. de Klerk, E. & Pasechnik, D.V. & Warners, J.P., 2004. "On approximate graph colouring and MAX-k-CUT algorithms based on the theta-function," Other publications TiSEM 7a6fbcee-93d0-4f7d-86be-b, Tilburg University, School of Economics and Management.
    4. Fischer, I. & Gruber, G. & Rendl, F. & Sotirov, R., 2006. "Computational experience with a bundle approach for semidenfinite cutting plane relaxations of max-cut and equipartition," Other publications TiSEM 03dfd8c3-9216-4c75-8921-3, Tilburg University, School of Economics and Management.
    5. NESTEROV, Yurii, 1997. "Semidefinite relaxation and nonconvex quadratic optimization," LIDAM Discussion Papers CORE 1997044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
    7. Helmberg, C., 2002. "Semidefinite programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 461-482, March.
    8. Frédéric Roupin, 2004. "From Linear to Semidefinite Programming: An Algorithm to Obtain Semidefinite Relaxations for Bivalent Quadratic Problems," Journal of Combinatorial Optimization, Springer, vol. 8(4), pages 469-493, December.
    9. Bissan Ghaddar & Miguel Anjos & Frauke Liers, 2011. "A branch-and-cut algorithm based on semidefinite programming for the minimum k-partition problem," Annals of Operations Research, Springer, vol. 188(1), pages 155-174, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kuryatnikova, Olga & Sotirov, Renata & Vera, J.C., 2022. "The maximum $k$-colorable subgraph problem and related problems," Other publications TiSEM 40e477c0-a78e-4ee1-92de-8, Tilburg University, School of Economics and Management.
    2. Olga Kuryatnikova & Renata Sotirov & Juan C. Vera, 2022. "The Maximum k -Colorable Subgraph Problem and Related Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 656-669, January.
    3. Zhi Pei & Mingzhong Wan & Ziteng Wang, 2020. "A new approximation algorithm for unrelated parallel machine scheduling with release dates," Annals of Operations Research, Springer, vol. 285(1), pages 397-425, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    2. Cheng Lu & Zhibin Deng, 2021. "A branch-and-bound algorithm for solving max-k-cut problem," Journal of Global Optimization, Springer, vol. 81(2), pages 367-389, October.
    3. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    4. de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Other publications TiSEM 87a5d126-86e5-4863-8ea5-1, Tilburg University, School of Economics and Management.
    5. Alain Billionnet & Sourour Elloumi & Amélie Lambert & Angelika Wiegele, 2017. "Using a Conic Bundle Method to Accelerate Both Phases of a Quadratic Convex Reformulation," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 318-331, May.
    6. Peter M. Hahn & Yi-Rong Zhu & Monique Guignard & William L. Hightower & Matthew J. Saltzman, 2012. "A Level-3 Reformulation-Linearization Technique-Based Bound for the Quadratic Assignment Problem," INFORMS Journal on Computing, INFORMS, vol. 24(2), pages 202-209, May.
    7. Levent Tunçel & Henry Wolkowicz, 2012. "Strong duality and minimal representations for cone optimization," Computational Optimization and Applications, Springer, vol. 53(2), pages 619-648, October.
    8. Renata Sotirov, 2014. "An Efficient Semidefinite Programming Relaxation for the Graph Partition Problem," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 16-30, February.
    9. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2019. "Improving the linear relaxation of maximum k-cut with semidefinite-based constraints," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 123-151, June.
    10. Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.
    11. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
    12. Vilmar Jefté Rodrigues de Sousa & Miguel F. Anjos & Sébastien Le Digabel, 2018. "Computational study of valid inequalities for the maximum k-cut problem," Annals of Operations Research, Springer, vol. 265(1), pages 5-27, June.
    13. Naomi Graham & Hao Hu & Jiyoung Im & Xinxin Li & Henry Wolkowicz, 2022. "A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2125-2143, July.
    14. Zhuoxuan Jiang & Xinyuan Zhao & Chao Ding, 2021. "A proximal DC approach for quadratic assignment problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 825-851, April.
    15. Dobre, C., 2011. "Semidefinite programming approaches for structured combinatorial optimization problems," Other publications TiSEM e1ec09bd-b024-4dec-acad-7, Tilburg University, School of Economics and Management.
    16. Gicquel, C. & Lisser, A. & Minoux, M., 2014. "An evaluation of semidefinite programming based approaches for discrete lot-sizing problems," European Journal of Operational Research, Elsevier, vol. 237(2), pages 498-507.
    17. Markus Chimani & Philipp Hungerländer, 2013. "Exact Approaches to Multilevel Vertical Orderings," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 611-624, November.
    18. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
    19. Jamie Fairbrother & Adam N. Letchford & Keith Briggs, 2018. "A two-level graph partitioning problem arising in mobile wireless communications," Computational Optimization and Applications, Springer, vol. 69(3), pages 653-676, April.
    20. Janez Povh, 2021. "On the Embed and Project Algorithm for the Graph Bandwidth Problem," Mathematics, MDPI, vol. 9(17), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:240:y:2016:i:1:d:10.1007_s10479-015-2015-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.