IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v201y2010i1p1-10.html
   My bibliography  Save this article

Exploiting special structure in semidefinite programming: A survey of theory and applications

Author

Listed:
  • Klerk, Etienne de

Abstract

Semidefinite programming (SDP) may be seen as a generalization of linear programming (LP). In particular, one may extend interior point algorithms for LP to SDP, but it has proven much more difficult to exploit structure in the SDP data during computation. We survey three types of special structures in SDP data: 1. A common 'chordal' sparsity pattern of all the data matrices. This structure arises in applications in graph theory, and may also be used to deal with more general sparsity patterns in a heuristic way. 2. Low rank of all the data matrices. This structure is common in SDP relaxations of combinatorial optimization problems, and SDP approximations of polynomial optimization problems. 3. The situation where the data matrices are invariant under the action of a permutation group, or, more generally, where the data matrices belong to a low dimensional matrix algebra. Such problems arise in truss topology optimization, particle physics, coding theory, computational geometry, and graph theory. We will give an overview of existing techniques to exploit these structures in the data. Most of the paper will be devoted to the third situation, since it has received the least attention in the literature so far.

Suggested Citation

  • Klerk, Etienne de, 2010. "Exploiting special structure in semidefinite programming: A survey of theory and applications," European Journal of Operational Research, Elsevier, vol. 201(1), pages 1-10, February.
  • Handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:1-10
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00038-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Other publications TiSEM ea23cd70-a3b1-401a-aa3f-0, Tilburg University, School of Economics and Management.
    2. GOEMANS, Michel & RENDL, Franz, 1999. "Semidefinite programs and association schemes," LIDAM Discussion Papers CORE 1999062, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. de Klerk, E. & Maharry, J. & Pasechnik, D.V. & Richter, B. & Salazar, G., 2006. "Improved bounds for the crossing numbers of Km,n and Kn," Other publications TiSEM eca87811-247d-489f-89c2-c, Tilburg University, School of Economics and Management.
    4. Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
    5. de Klerk, E. & Pasechnik, D.V. & Schrijver, A., 2007. "Reduction of symmetric semidefinite programs using the regular*-representation," Other publications TiSEM e418158e-b9dd-4372-b84c-e, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
    2. Didier Henrion & Frédéric Messine, 2013. "Finding largest small polygons with GloptiPoly," Journal of Global Optimization, Springer, vol. 56(3), pages 1017-1028, July.
    3. Teles, João P. & Castro, Pedro M. & Matos, Henrique A., 2013. "Univariate parameterization for global optimization of mixed-integer polynomial problems," European Journal of Operational Research, Elsevier, vol. 229(3), pages 613-625.
    4. Alexander Engau & Miguel Anjos & Immanuel Bomze, 2013. "Constraint selection in a build-up interior-point cutting-plane method for solving relaxations of the stable-set problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(1), pages 35-59, August.
    5. Papp, Dávid & Regős, Krisztina & Domokos, Gábor & Bozóki, Sándor, 2023. "The smallest mono-unstable convex polyhedron with point masses has 8 faces and 11 vertices," European Journal of Operational Research, Elsevier, vol. 310(2), pages 511-517.
    6. Campos, Juan S. & Misener, Ruth & Parpas, Panos, 2019. "A multilevel analysis of the Lasserre hierarchy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 32-41.
    7. Kirschner, Felix, 2023. "Conic optimization with applications in finance and approximation theory," Other publications TiSEM e9bef4a5-ee46-45be-90d7-9, Tilburg University, School of Economics and Management.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Other publications TiSEM 87a5d126-86e5-4863-8ea5-1, Tilburg University, School of Economics and Management.
    2. Sungwoo Park & Dianne P. O’Leary, 2015. "A Polynomial Time Constraint-Reduced Algorithm for Semidefinite Optimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 166(2), pages 558-571, August.
    3. E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
    4. Bai, Y.Q. & de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "Exploiting Group Symmetry in Truss Topology Optimization," Discussion Paper 2007-17, Tilburg University, Center for Economic Research.
    5. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
    6. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Discussion Paper 2008-96, Tilburg University, Center for Economic Research.
    7. Vivek Bagaria & Jian Ding & David Tse & Yihong Wu & Jiaming Xu, 2020. "Hidden Hamiltonian Cycle Recovery via Linear Programming," Operations Research, INFORMS, vol. 68(1), pages 53-70, January.
    8. de Klerk, E. & Pasechnik, D.V., 2005. "Solving SDP's in Non-commutative Algebras Part I : The Dual-Scaling Algorithm," Other publications TiSEM 6f3b3773-18cc-400b-961d-6, Tilburg University, School of Economics and Management.
    9. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
    10. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
    11. Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2023. "Exact SDP relaxations for quadratic programs with bipartite graph structures," Journal of Global Optimization, Springer, vol. 86(3), pages 671-691, July.
    12. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    13. Papp, Dávid & Regős, Krisztina & Domokos, Gábor & Bozóki, Sándor, 2023. "The smallest mono-unstable convex polyhedron with point masses has 8 faces and 11 vertices," European Journal of Operational Research, Elsevier, vol. 310(2), pages 511-517.
    14. Yichuan Ding & Dongdong Ge & Henry Wolkowicz, 2011. "On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 88-104, February.
    15. Yong Xia & Wajeb Gharibi, 2015. "On improving convex quadratic programming relaxation for the quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 647-667, October.
    16. de Klerk, E. & Pasechnik, D.V., 2009. "On Semidefinite Programming Relaxations of Association Schemes With Application to Combinatorial Optimization Problems," Discussion Paper 2009-54, Tilburg University, Center for Economic Research.
    17. de Klerk, E. & Pasechnik, D.V., 2007. "A linear programming reformulation of the standard quadratic optimization problem," Other publications TiSEM c3e74115-b343-4a85-976b-8, Tilburg University, School of Economics and Management.
    18. Cordian Riener & Thorsten Theobald & Lina Jansson Andrén & Jean B. Lasserre, 2013. "Exploiting Symmetries in SDP-Relaxations for Polynomial Optimization," Mathematics of Operations Research, INFORMS, vol. 38(1), pages 122-141, February.
    19. de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Other publications TiSEM 88640b6d-5240-472d-8669-4, Tilburg University, School of Economics and Management.
    20. Teles, João P. & Castro, Pedro M. & Matos, Henrique A., 2013. "Univariate parameterization for global optimization of mixed-integer polynomial problems," European Journal of Operational Research, Elsevier, vol. 229(3), pages 613-625.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:201:y:2010:i:1:p:1-10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.