The min-cut and vertex separator problem
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-017-9943-4
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- de Klerk, E. & Sotirov, R., 2007.
"Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem,"
Discussion Paper
2007-44, Tilburg University, Center for Economic Research.
- de Klerk, E. & Sotirov, R., 2010. "Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem," Other publications TiSEM 73287c80-3bc2-40c4-b02d-4, Tilburg University, School of Economics and Management.
- de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Other publications TiSEM 87a5d126-86e5-4863-8ea5-1, Tilburg University, School of Economics and Management.
- Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
- van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
- Mohamed Didi Biha & Marie-Jean Meurs, 2011. "An exact algorithm for solving the vertex separator problem," Journal of Global Optimization, Springer, vol. 49(3), pages 425-434, March.
- Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
- Norberto Castillo-García & Paula Hernández Hernández, 2019. "Two new integer linear programming formulations for the vertex bisection problem," Computational Optimization and Applications, Springer, vol. 74(3), pages 895-918, December.
- Kuryatnikova, Olga & Sotirov, Renata & Vera, J.C., 2022. "The maximum $k$-colorable subgraph problem and related problems," Other publications TiSEM 40e477c0-a78e-4ee1-92de-8, Tilburg University, School of Economics and Management.
- Olga Kuryatnikova & Renata Sotirov & Juan C. Vera, 2022. "The Maximum k -Colorable Subgraph Problem and Related Problems," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 656-669, January.
- Xinxin Li & Ting Kei Pong & Hao Sun & Henry Wolkowicz, 2021. "A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 853-891, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
- Xinxin Li & Ting Kei Pong & Hao Sun & Henry Wolkowicz, 2021. "A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 853-891, April.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007.
"On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96),"
Discussion Paper
2007-101, Tilburg University, Center for Economic Research.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Other publications TiSEM 12999d3d-956a-4660-9ae4-5, Tilburg University, School of Economics and Management.
- E. R. van Dam & R. Sotirov, 2015.
"On Bounding the Bandwidth of Graphs with Symmetry,"
INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
- van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
- de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
- Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
- José F. S. Bravo Ferreira & Yuehaw Khoo & Amit Singer, 2018. "Semidefinite programming approach for the quadratic assignment problem with a sparse graph," Computational Optimization and Applications, Springer, vol. 69(3), pages 677-712, April.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008.
"On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101),"
Discussion Paper
2008-96, Tilburg University, Center for Economic Research.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Other publications TiSEM ea23cd70-a3b1-401a-aa3f-0, Tilburg University, School of Economics and Management.
- Yichuan Ding & Dongdong Ge & Henry Wolkowicz, 2011. "On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 88-104, February.
- Brosch, Daniel & de Klerk, Etienne, 2021. "Jordan symmetry reduction for conic optimization over the doubly nonnegative cone: Theory and software," Other publications TiSEM 283da78a-b42f-47b4-b2b7-2, Tilburg University, School of Economics and Management.
- E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
- Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
- Matteo Fischetti & Michele Monaci & Domenico Salvagnin, 2012. "Three Ideas for the Quadratic Assignment Problem," Operations Research, INFORMS, vol. 60(4), pages 954-964, August.
- Janez Povh, 2021. "On the Embed and Project Algorithm for the Graph Bandwidth Problem," Mathematics, MDPI, vol. 9(17), pages 1-15, August.
- Xiaolong Kuang & Bissan Ghaddar & Joe Naoum-Sawaya & Luis F. Zuluaga, 2019. "Alternative SDP and SOCP approximations for polynomial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 153-175, June.
- Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
- Hu, Hao, 2019. "The quadratic shortest path problem : Theory and computations," Other publications TiSEM 2affb54f-da41-461b-9782-d, Tilburg University, School of Economics and Management.
- Samuel Burer & Sunyoung Kim & Masakazu Kojima, 2014. "Faster, but weaker, relaxations for quadratically constrained quadratic programs," Computational Optimization and Applications, Springer, vol. 59(1), pages 27-45, October.
- Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2023. "Exact SDP relaxations for quadratic programs with bipartite graph structures," Journal of Global Optimization, Springer, vol. 86(3), pages 671-691, July.
- Benlic, Una & Epitropakis, Michael G. & Burke, Edmund K., 2017. "A hybrid breakout local search and reinforcement learning approach to the vertex separator problem," European Journal of Operational Research, Elsevier, vol. 261(3), pages 803-818.
More about this item
Keywords
Vertex separator; Minimum cut; Semidefinite programming; Convexification;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:69:y:2018:i:1:d:10.1007_s10589-017-9943-4. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.