A note on lack of strong duality for quadratic problems with orthogonal constraints
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- S. W. Hadley & F. Rendl & H. Wolkowicz, 1992. "A New Lower Bound Via Projection for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 727-739, August.
- NESTEROV, Yu. & WOLKOWICZ, Henry & YE, Yinyu, 2000. "Semidefinite programming relaxations of nonconvex quadratic optimization," LIDAM Reprints CORE 1471, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.
- Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
- Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
- Yichuan Ding & Dongdong Ge & Henry Wolkowicz, 2011. "On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 88-104, February.
- Yong Xia & Wajeb Gharibi, 2015. "On improving convex quadratic programming relaxation for the quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 647-667, October.
- Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
- X. X. Huang & X. Q. Yang & K. L. Teo, 2007. "Lower-Order Penalization Approach to Nonlinear Semidefinite Programming," Journal of Optimization Theory and Applications, Springer, vol. 132(1), pages 1-20, January.
- de Klerk, E., 2006. "The Complexity of Optimizing over a Simplex, Hypercube or Sphere : A Short Survey," Discussion Paper 2006-85, Tilburg University, Center for Economic Research.
- de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
- Temadher A. Almaadeed & Saeid Ansary Karbasy & Maziar Salahi & Abdelouahed Hamdi, 2022. "On Indefinite Quadratic Optimization over the Intersection of Balls and Linear Constraints," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 246-264, July.
- Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007.
"On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96),"
Discussion Paper
2007-101, Tilburg University, Center for Economic Research.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Other publications TiSEM 12999d3d-956a-4660-9ae4-5, Tilburg University, School of Economics and Management.
- de Klerk, E. & den Hertog, D. & Elfadul, G.E.E., 2005. "On the Complexity of Optimization over the Standard Simplex," Other publications TiSEM 3789955a-6533-4a4e-aca2-6, Tilburg University, School of Economics and Management.
- Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2022. "Exact SDP relaxations of quadratically constrained quadratic programs with forest structures," Journal of Global Optimization, Springer, vol. 82(2), pages 243-262, February.
- Hu, Hao, 2019. "The quadratic shortest path problem : Theory and computations," Other publications TiSEM 2affb54f-da41-461b-9782-d, Tilburg University, School of Economics and Management.
- Mădălina M. Drugan, 2015. "Generating QAP instances with known optimum solution and additively decomposable cost function," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1138-1172, November.
- E. R. van Dam & R. Sotirov, 2015.
"On Bounding the Bandwidth of Graphs with Symmetry,"
INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
- van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
- de Klerk, E. & den Hertog, D. & Elabwabi, G., 2008.
"On the complexity of optimization over the standard simplex,"
European Journal of Operational Research, Elsevier, vol. 191(3), pages 773-785, December.
- de Klerk, E. & den Hertog, D. & Elfadul, G.E.E., 2005. "On the Complexity of Optimization over the Standard Simplex," Discussion Paper 2005-125, Tilburg University, Center for Economic Research.
- Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2023. "Exact SDP relaxations for quadratic programs with bipartite graph structures," Journal of Global Optimization, Springer, vol. 86(3), pages 671-691, July.
- de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:143:y:2002:i:2:p:356-364. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.