IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v53y2012i2p619-648.html
   My bibliography  Save this article

Strong duality and minimal representations for cone optimization

Author

Listed:
  • Levent Tunçel
  • Henry Wolkowicz

Abstract

The elegant theoretical results for strong duality and strict complementarity for linear programming, LP, lie behind the success of current algorithms. In addition, preprocessing is an essential step for efficiency in both simplex type and interior-point methods. However, the theory and preprocessing techniques can fail for cone programming over nonpolyhedral cones. We take a fresh look at known and new results for duality, optimality, constraint qualifications, CQ, and strict complementarity, for linear cone optimization problems in finite dimensions. One theme is the notion of minimal representation of the cone and the constraints. This provides a framework for preprocessing cone optimization problems in order to avoid both the theoretical and numerical difficulties that arise due to the (near) loss of the strong CQ, strict feasibility. We include results and examples on the surprising theoretical connection between duality gaps in the original primal-dual pair and lack of strict complementarity in their homogeneous counterpart. Our emphasis is on results that deal with Semidefinite Programming, SDP. Copyright Springer Science+Business Media, LLC 2012

Suggested Citation

  • Levent Tunçel & Henry Wolkowicz, 2012. "Strong duality and minimal representations for cone optimization," Computational Optimization and Applications, Springer, vol. 53(2), pages 619-648, October.
  • Handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:619-648
    DOI: 10.1007/s10589-012-9480-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-012-9480-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-012-9480-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Csaba Mészáros & Jacek Gondzio, 2001. "Addendum to "Presolve Analysis of Linear Programs Prior to Applying an Interior Point Method"," INFORMS Journal on Computing, INFORMS, vol. 13(2), pages 169-170, May.
    2. Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
    3. Helmberg, C., 2002. "Semidefinite programming," European Journal of Operational Research, Elsevier, vol. 137(3), pages 461-482, March.
    4. Maria Gonzalez-Lima & Hua Wei & Henry Wolkowicz, 2009. "A stable primal–dual approach for linear programming under nondegeneracy assumptions," Computational Optimization and Applications, Springer, vol. 44(2), pages 213-247, November.
    5. Gábor Pataki, 2007. "On the Closedness of the Linear Image of a Closed Convex Cone," Mathematics of Operations Research, INFORMS, vol. 32(2), pages 395-412, May.
    6. Halická, M. & de Klerk, E. & Roos, C., 2002. "On the convergence of the central path in semidefinite optimization," Other publications TiSEM 9ca12b89-1208-46aa-8d70-4, Tilburg University, School of Economics and Management.
    7. Jacek Gondzio, 1997. "Presolve Analysis of Linear Programs Prior to Applying an Interior Point Method," INFORMS Journal on Computing, INFORMS, vol. 9(1), pages 73-91, February.
    8. Kartik Krishnan & Tamás Terlaky, 2005. "Interior Point and Semidefinite Approaches in Combinatorial Optimization," Springer Books, in: David Avis & Alain Hertz & Odile Marcotte (ed.), Graph Theory and Combinatorial Optimization, chapter 0, pages 101-157, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernest K. Ryu & Yanli Liu & Wotao Yin, 2019. "Douglas–Rachford splitting and ADMM for pathological convex optimization," Computational Optimization and Applications, Springer, vol. 74(3), pages 747-778, December.
    2. Igor Klep & Markus Schweighofer, 2013. "An Exact Duality Theory for Semidefinite Programming Based on Sums of Squares," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 569-590, August.
    3. Bomze, Immanuel M. & Gabl, Markus, 2023. "Optimization under uncertainty and risk: Quadratic and copositive approaches," European Journal of Operational Research, Elsevier, vol. 310(2), pages 449-476.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Im, Haesol & Wolkowicz, Henry, 2023. "Revisiting degeneracy, strict feasibility, stability, in linear programming," European Journal of Operational Research, Elsevier, vol. 310(2), pages 495-510.
    2. F. Rendl, 2016. "Semidefinite relaxations for partitioning, assignment and ordering problems," Annals of Operations Research, Springer, vol. 240(1), pages 119-140, May.
    3. Maros, Istvan & Haroon Khaliq, Mohammad, 2002. "Advances in design and implementation of optimization software," European Journal of Operational Research, Elsevier, vol. 140(2), pages 322-337, July.
    4. J. X. Cruz Neto & O. P. Ferreira & P. R. Oliveira & R. C. M. Silva, 2008. "Central Paths in Semidefinite Programming, Generalized Proximal-Point Method and Cauchy Trajectories in Riemannian Manifolds," Journal of Optimization Theory and Applications, Springer, vol. 139(2), pages 227-242, November.
    5. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
    6. Jeffery L. Kennington & Karen R. Lewis, 2004. "Generalized Networks: The Theory of Preprocessing and an Empirical Analysis," INFORMS Journal on Computing, INFORMS, vol. 16(2), pages 162-173, May.
    7. Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
    8. de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Discussion Paper 2007-101, Tilburg University, Center for Economic Research.
    9. María Gonzalez-Lima & Aurelio Oliveira & Danilo Oliveira, 2013. "A robust and efficient proposal for solving linear systems arising in interior-point methods for linear programming," Computational Optimization and Applications, Springer, vol. 56(3), pages 573-597, December.
    10. Héctor Ramírez & David Sossa, 2017. "On the Central Paths in Symmetric Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 172(2), pages 649-668, February.
    11. Hu, Hao, 2019. "The quadratic shortest path problem : Theory and computations," Other publications TiSEM 2affb54f-da41-461b-9782-d, Tilburg University, School of Economics and Management.
    12. Liguo Jiao & Jae Hyoung Lee, 2018. "Approximate Optimality and Approximate Duality for Quasi Approximate Solutions in Robust Convex Semidefinite Programs," Journal of Optimization Theory and Applications, Springer, vol. 176(1), pages 74-93, January.
    13. E. R. van Dam & R. Sotirov, 2015. "On Bounding the Bandwidth of Graphs with Symmetry," INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
    14. Yong Xia & Ying-Wei Han, 2014. "Partial Lagrangian relaxation for the unbalanced orthogonal Procrustes problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 79(2), pages 225-237, April.
    15. Alper Atamtürk & Martin Savelsbergh, 2005. "Integer-Programming Software Systems," Annals of Operations Research, Springer, vol. 140(1), pages 67-124, November.
    16. X. Yang & K. Meng, 2014. "Comments on: Farkas’ Lemma: three decades of generalizations for mathematical optimization," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 38-40, April.
    17. Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2023. "Exact SDP relaxations for quadratic programs with bipartite graph structures," Journal of Global Optimization, Springer, vol. 86(3), pages 671-691, July.
    18. de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
    19. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    20. Patrick Gemander & Wei-Kun Chen & Dieter Weninger & Leona Gottwald & Ambros Gleixner & Alexander Martin, 2020. "Two-row and two-column mixed-integer presolve using hashing-based pairing methods," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 8(3), pages 205-240, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:53:y:2012:i:2:p:619-648. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.