Exact SDP relaxations for quadratic programs with bipartite graph structures
Author
Abstract
Suggested Citation
DOI: 10.1007/s10898-022-01268-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Masaki Kimizuka & Sunyoung Kim & Makoto Yamashita, 2019. "Solving pooling problems with time discretization by LP and SOCP relaxations and rescheduling methods," Journal of Global Optimization, Springer, vol. 75(3), pages 631-654, November.
- Godai Azuma & Mituhiro Fukuda & Sunyoung Kim & Makoto Yamashita, 2022. "Exact SDP relaxations of quadratically constrained quadratic programs with forest structures," Journal of Global Optimization, Springer, vol. 82(2), pages 243-262, February.
- Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.
- Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007.
"On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96),"
Discussion Paper
2007-101, Tilburg University, Center for Economic Research.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2007. "On Semidefinite Programming Relaxations of the Travelling Salesman Problem (Replaced by DP 2008-96)," Other publications TiSEM 12999d3d-956a-4660-9ae4-5, Tilburg University, School of Economics and Management.
- Hu, Hao, 2019. "The quadratic shortest path problem : Theory and computations," Other publications TiSEM 2affb54f-da41-461b-9782-d, Tilburg University, School of Economics and Management.
- E. R. van Dam & R. Sotirov, 2015.
"On Bounding the Bandwidth of Graphs with Symmetry,"
INFORMS Journal on Computing, INFORMS, vol. 27(1), pages 75-88, February.
- van Dam, E.R. & Sotirov, R., 2015. "On bounding the bandwidth of graphs with symmetry," Other publications TiSEM 180849f1-e7d3-44d9-8424-5, Tilburg University, School of Economics and Management.
- de Klerk, Etienne & -Nagy, Marianna E. & Sotirov, Renata & Truetsch, Uwe, 2014. "Symmetry in RLT-type relaxations for the quadratic assignment and standard quadratic optimization problems," European Journal of Operational Research, Elsevier, vol. 233(3), pages 488-499.
- Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
- Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.
- José F. S. Bravo Ferreira & Yuehaw Khoo & Amit Singer, 2018. "Semidefinite programming approach for the quadratic assignment problem with a sparse graph," Computational Optimization and Applications, Springer, vol. 69(3), pages 677-712, April.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008.
"On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101),"
Discussion Paper
2008-96, Tilburg University, Center for Economic Research.
- de Klerk, E. & Pasechnik, D.V. & Sotirov, R., 2008. "On Semidefinite Programming Relaxations of the Traveling Salesman Problem (revision of DP 2007-101)," Other publications TiSEM ea23cd70-a3b1-401a-aa3f-0, Tilburg University, School of Economics and Management.
- Naomi Graham & Hao Hu & Jiyoung Im & Xinxin Li & Henry Wolkowicz, 2022. "A Restricted Dual Peaceman-Rachford Splitting Method for a Strengthened DNN Relaxation for QAP," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2125-2143, July.
- Yichuan Ding & Dongdong Ge & Henry Wolkowicz, 2011. "On Equivalence of Semidefinite Relaxations for Quadratic Matrix Programming," Mathematics of Operations Research, INFORMS, vol. 36(1), pages 88-104, February.
- Fanz Rendl & Renata Sotirov, 2018. "The min-cut and vertex separator problem," Computational Optimization and Applications, Springer, vol. 69(1), pages 159-187, January.
- de Klerk, E. & Sotirov, R., 2007.
"Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem,"
Other publications TiSEM
87a5d126-86e5-4863-8ea5-1, Tilburg University, School of Economics and Management.
- de Klerk, E. & Sotirov, R., 2007. "Exploiting Group Symmetry in Semidefinite Programming Relaxations of the Quadratic Assignment Problem," Discussion Paper 2007-44, Tilburg University, Center for Economic Research.
- de Klerk, E. & Sotirov, R., 2010. "Exploiting group symmetry in semidefinite programming relaxations of the quadratic assignment problem," Other publications TiSEM 73287c80-3bc2-40c4-b02d-4, Tilburg University, School of Economics and Management.
- Yong Xia & Wajeb Gharibi, 2015. "On improving convex quadratic programming relaxation for the quadratic assignment problem," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 647-667, October.
- Zhuoxuan Jiang & Xinyuan Zhao & Chao Ding, 2021. "A proximal DC approach for quadratic assignment problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 825-851, April.
- Hu, Hao & Sotirov, Renata & Wolkowicz, Henry, 2023. "Facial reduction for symmetry reduced semidefinite and doubly nonnegative programs," Other publications TiSEM 8dd3dbae-58fd-4238-b786-e, Tilburg University, School of Economics and Management.
- Dobre, C., 2011. "Semidefinite programming approaches for structured combinatorial optimization problems," Other publications TiSEM e1ec09bd-b024-4dec-acad-7, Tilburg University, School of Economics and Management.
- Xinxin Li & Ting Kei Pong & Hao Sun & Henry Wolkowicz, 2021. "A strictly contractive Peaceman-Rachford splitting method for the doubly nonnegative relaxation of the minimum cut problem," Computational Optimization and Applications, Springer, vol. 78(3), pages 853-891, April.
- Yuzhou Qiu & E. Alper Yıldırım, 2024. "On exact and inexact RLT and SDP-RLT relaxations of quadratic programs with box constraints," Journal of Global Optimization, Springer, vol. 90(2), pages 293-322, October.
More about this item
Keywords
Quadratically constrained quadratic programs; Exact semidefinite relaxations; Bipartite graph; Sign-indefinite QCQPs; Rank of aggregated sparsity matrix;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:86:y:2023:i:3:d:10.1007_s10898-022-01268-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.