IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v30y2018i3p424-437.html
   My bibliography  Save this article

Quadratic Combinatorial Optimization Using Separable Underestimators

Author

Listed:
  • Christoph Buchheim

    (Fakultät für Mathematik, Technische Universität Dortmund, 44227 Dortmund, Germany)

  • Emiliano Traversi

    (Laboratoire d’Informatique de Paris Nord, Université Paris 13, 93430 Villetaneuse, France)

Abstract

Binary programs with a quadratic objective function are NP-hard in general, even if the linear optimization problem over the same feasible set is tractable. In this paper, we address such problems by computing quadratic global underestimators of the objective function that are separable but not necessarily convex. Exploiting the binary constraint on the variables, a minimizer of the separable underestimator over the feasible set can be computed by solving an appropriate linear minimization problem over the same feasible set. Embedding the resulting lower bounds into a branch-and-bound framework, we obtain an exact algorithm for the original quadratic binary program. The main practical challenge is the fast computation of an appropriate underestimator, which in our approach reduces to solving a series of semidefinite programs. We exploit the special structure of the resulting problems to obtain a tailored coordinate-descent method for their solution. Our extensive experimental results on various quadratic combinatorial optimization problems show that our approach outperforms both CPLEX and the related QCR method as well as the SDP-based software BiqCrunch on instances of the quadratic shortest path problem and the quadratic assignment problem.

Suggested Citation

  • Christoph Buchheim & Emiliano Traversi, 2018. "Quadratic Combinatorial Optimization Using Separable Underestimators," INFORMS Journal on Computing, INFORMS, vol. 30(3), pages 424-437, August.
  • Handle: RePEc:inm:orijoc:v:30:y:2018:i:3:p:424-437
    DOI: 10.1287/ijoc.2017.0789
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2017.0789
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2017.0789?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Christoph Buchheim & Angelika Wiegele & Lanbo Zheng, 2010. "Exact Algorithms for the Quadratic Linear Ordering Problem," INFORMS Journal on Computing, INFORMS, vol. 22(1), pages 168-177, February.
    2. Hao Hu & Renata Sotirov, 2018. "Special cases of the quadratic shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 35(3), pages 754-777, April.
    3. Christoph Buchheim & Marianna De Santis & Laura Palagi & Mauro Piacentini, 2012. "An Exact Algorithm for Quadratic Integer Minimization using Nonconvex Relaxations," DIS Technical Reports 2012-05, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. Alberto Caprara & David Pisinger & Paolo Toth, 1999. "Exact Solution of the Quadratic Knapsack Problem," INFORMS Journal on Computing, INFORMS, vol. 11(2), pages 125-137, May.
    5. Arjang Assad & Weixuan Xu, 1992. "The quadratic minimum spanning tree problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(3), pages 399-417, April.
    6. C. Helmberg & F. Rendl & R. Weismantel, 2000. "A Semidefinite Programming Approach to the Quadratic Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 197-215, June.
    7. Eugene L. Lawler, 1963. "The Quadratic Assignment Problem," Management Science, INFORMS, vol. 9(4), pages 586-599, July.
    8. Caprara, Alberto, 2008. "Constrained 0-1 quadratic programming: Basic approaches and extensions," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1494-1503, June.
    9. Laura Palagi & Veronica Piccialli & Franz Rendl & Giovanni Rinaldi & Angelika Wiegele, 2012. "Computational Approaches to Max-Cut," International Series in Operations Research & Management Science, in: Miguel F. Anjos & Jean B. Lasserre (ed.), Handbook on Semidefinite, Conic and Polynomial Optimization, chapter 0, pages 821-847, Springer.
    10. E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
    11. Qing Zhao & Stefan E. Karisch & Franz Rendl & Henry Wolkowicz, 1998. "Semidefinite Programming Relaxations for the Quadratic Assignment Problem," Journal of Combinatorial Optimization, Springer, vol. 2(1), pages 71-109, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rostami, Borzou & Chassein, André & Hopf, Michael & Frey, Davide & Buchheim, Christoph & Malucelli, Federico & Goerigk, Marc, 2018. "The quadratic shortest path problem: complexity, approximability, and solution methods," European Journal of Operational Research, Elsevier, vol. 268(2), pages 473-485.
    2. Fabio Furini & Emiliano Traversi, 2019. "Theoretical and computational study of several linearisation techniques for binary quadratic problems," Annals of Operations Research, Springer, vol. 279(1), pages 387-411, August.
    3. Caprara, Alberto, 2008. "Constrained 0-1 quadratic programming: Basic approaches and extensions," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1494-1503, June.
    4. Schauer, Joachim, 2016. "Asymptotic behavior of the quadratic knapsack problem," European Journal of Operational Research, Elsevier, vol. 255(2), pages 357-363.
    5. Michele Garraffa & Federico Della Croce & Fabio Salassa, 2017. "An exact semidefinite programming approach for the max-mean dispersion problem," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 71-93, July.
    6. Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.
    7. Jiming Peng & Tao Zhu & Hezhi Luo & Kim-Chuan Toh, 2015. "Semi-definite programming relaxation of quadratic assignment problems based on nonredundant matrix splitting," Computational Optimization and Applications, Springer, vol. 60(1), pages 171-198, January.
    8. Britta Schulze & Michael Stiglmayr & Luís Paquete & Carlos M. Fonseca & David Willems & Stefan Ruzika, 2020. "On the rectangular knapsack problem: approximation of a specific quadratic knapsack problem," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(1), pages 107-132, August.
    9. José F. S. Bravo Ferreira & Yuehaw Khoo & Amit Singer, 2018. "Semidefinite programming approach for the quadratic assignment problem with a sparse graph," Computational Optimization and Applications, Springer, vol. 69(3), pages 677-712, April.
    10. Frank Meijer & Renata Sotirov, 2020. "The quadratic cycle cover problem: special cases and efficient bounds," Journal of Combinatorial Optimization, Springer, vol. 39(4), pages 1096-1128, May.
    11. Richard J. Forrester & Warren P. Adams & Paul T. Hadavas, 2010. "Concise RLT forms of binary programs: A computational study of the quadratic knapsack problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 57(1), pages 1-12, February.
    12. Nihal Berktaş & Hande Yaman, 2021. "A Branch-and-Bound Algorithm for Team Formation on Social Networks," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 1162-1176, July.
    13. X. Zheng & X. Sun & D. Li & Y. Xu, 2012. "On reduction of duality gap in quadratic knapsack problems," Journal of Global Optimization, Springer, vol. 54(2), pages 325-339, October.
    14. E. de Klerk & R. Sotirov & U. Truetsch, 2015. "A New Semidefinite Programming Relaxation for the Quadratic Assignment Problem and Its Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 378-391, May.
    15. Loiola, Eliane Maria & de Abreu, Nair Maria Maia & Boaventura-Netto, Paulo Oswaldo & Hahn, Peter & Querido, Tania, 2007. "A survey for the quadratic assignment problem," European Journal of Operational Research, Elsevier, vol. 176(2), pages 657-690, January.
    16. David Bergman, 2019. "An Exact Algorithm for the Quadratic Multiknapsack Problem with an Application to Event Seating," INFORMS Journal on Computing, INFORMS, vol. 31(3), pages 477-492, July.
    17. Yichuan Ding & Henry Wolkowicz, 2009. "A Low-Dimensional Semidefinite Relaxation for the Quadratic Assignment Problem," Mathematics of Operations Research, INFORMS, vol. 34(4), pages 1008-1022, November.
    18. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    19. Wu, Xin (Bruce) & Lu, Jiawei & Wu, Shengnan & Zhou, Xuesong (Simon), 2021. "Synchronizing time-dependent transportation services: Reformulation and solution algorithm using quadratic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 140-179.
    20. Ting Pong & Hao Sun & Ningchuan Wang & Henry Wolkowicz, 2016. "Eigenvalue, quadratic programming, and semidefinite programming relaxations for a cut minimization problem," Computational Optimization and Applications, Springer, vol. 63(2), pages 333-364, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:30:y:2018:i:3:p:424-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.