IDEAS home Printed from https://ideas.repec.org/r/qed/wpaper/1118.html
   My bibliography  Save this item

Bayesian Estimation Of Dynamic Discrete Choice Models

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Patrick Bajari & C. Lanier Benkard & Jonathan Levin, 2007. "Estimating Dynamic Models of Imperfect Competition," Econometrica, Econometric Society, vol. 75(5), pages 1331-1370, September.
  2. Victor Aguirregabiria & Victor Aguirregabiria & Aviv Nevo & Aviv Nevo, 2010. "Recent Developments in Empirical IO: Dynamic Demand and Dynamic Games," Working Papers tecipa-419, University of Toronto, Department of Economics.
  3. Michelle Sovinsky & Liana Jacobi & Alessandra Allocca & Tao Sun, 2023. "More than Joints: Multi-Substance Use, Choice Limitations, and Policy Implications," Rationality and Competition Discussion Paper Series 487, CRC TRR 190 Rationality and Competition.
  4. Aguirregabiria, Victor & Mira, Pedro, 2010. "Dynamic discrete choice structural models: A survey," Journal of Econometrics, Elsevier, vol. 156(1), pages 38-67, May.
  5. Rae Yule Kim, 2021. "When does online review matter to consumers? The effect of product quality information cues," Electronic Commerce Research, Springer, vol. 21(4), pages 1011-1030, December.
  6. Norets, Andriy & Shimizu, Kenichi, 2024. "Semiparametric Bayesian estimation of dynamic discrete choice models," Journal of Econometrics, Elsevier, vol. 238(2).
  7. Michael P. Keane & Kenneth I. Wolpin, 2009. "Empirical Applications of Discrete Choice Dynamic Programming Models," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 12(1), pages 1-22, January.
  8. Andreas Lanz & Gregor Reich & Ole Wilms, 2022. "Adaptive grids for the estimation of dynamic models," Quantitative Marketing and Economics (QME), Springer, vol. 20(2), pages 179-238, June.
  9. Ricardo A. Daziano & Luis Miranda-Moreno & Shahram Heydari, 2013. "Computational Bayesian Statistics in Transportation Modeling: From Road Safety Analysis to Discrete Choice," Transport Reviews, Taylor & Francis Journals, vol. 33(5), pages 570-592, September.
  10. Naman Shukla & Kartik Yellepeddi, 2021. "Negotiating Networks in Oligopoly Markets for Price-Sensitive Products," Papers 2110.13303, arXiv.org.
  11. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
  12. Matthew Osborne, 2018. "Approximating the Cost-of-Living Index for a Storable Good," American Economic Journal: Microeconomics, American Economic Association, vol. 10(2), pages 286-314, May.
  13. Jason R. Blevins & Ahmed Khwaja & Nathan Yang, 2018. "Firm Expansion, Size Spillovers, and Market Dominance in Retail Chain Dynamics," Management Science, INFORMS, vol. 64(9), pages 4070-4093.
  14. A. Ronald Gallant & Han Hong & Ahmed Khwaja, 2012. "Bayesian Estimation of a Dynamic Game with Endogenous, Partially Observed, Serially Correlated State," Working Papers 12-01, Duke University, Department of Economics.
  15. Andrew T. Ching & Matthew Osborne, 2020. "Identification and Estimation of Forward-Looking Behavior: The Case of Consumer Stockpiling," Marketing Science, INFORMS, vol. 39(4), pages 707-726, July.
  16. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
  17. Jialie Chen & Vithala R. Rao, 2020. "A Dynamic Model of Rational Addiction with Stockpiling and Learning: An Empirical Examination of E-cigarettes," Management Science, INFORMS, vol. 66(12), pages 5886-5905, December.
  18. Hu, Yingyao & Kayaba, Yutaka & Shum, Matthew, 2013. "Nonparametric learning rules from bandit experiments: The eyes have it!," Games and Economic Behavior, Elsevier, vol. 81(C), pages 215-231.
  19. Xiao Liu & Timothy Derdenger & Baohong Sun, 2018. "An Empirical Analysis of Consumer Purchase Behavior of Base Products and Add-ons Given Compatibility Constraints," Marketing Science, INFORMS, vol. 37(4), pages 569-591, August.
  20. Sumeetpal S. Singh & Nicolas Chopin & Nick Whiteley, 2010. "Bayesian Learning of Noisy Markov Decision Processes," Working Papers 2010-36, Center for Research in Economics and Statistics.
  21. Michelle Sovinsky & Liana Jacobi & Alessandra Allocca & Tao Sun, 2024. "More than Joints: Multi-Substance Use, Choice Limitations, and Policy Implications," CRC TR 224 Discussion Paper Series crctr224_2024_501, University of Bonn and University of Mannheim, Germany.
  22. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
  23. Hu, Yingyao & Shum, Matthew, 2012. "Nonparametric identification of dynamic models with unobserved state variables," Journal of Econometrics, Elsevier, vol. 171(1), pages 32-44.
  24. Masakazu Ishihara & Andrew T. Ching, 2019. "Dynamic Demand for New and Used Durable Goods Without Physical Depreciation: The Case of Japanese Video Games," Marketing Science, INFORMS, vol. 38(3), pages 392-416, May.
  25. Jonathan Leightner & Tomoo Inoue & Pierre Lafaye de Micheaux, 2021. "Variable Slope Forecasting Methods and COVID-19 Risk," JRFM, MDPI, vol. 14(10), pages 1-22, October.
  26. Christopher Ferrall, 2020. "Object Oriented (Dynamic) Programming: Replication, Innovation and "Structural" Estimation," Working Paper 1432, Economics Department, Queen's University.
  27. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Specification tests based on MCMC output," Journal of Econometrics, Elsevier, vol. 207(1), pages 237-260.
  28. Haoying Wang & Guohui Wu, 2022. "Modeling discrete choices with large fine-scale spatial data: opportunities and challenges," Journal of Geographical Systems, Springer, vol. 24(3), pages 325-351, July.
  29. A. Ronald Gallant & Han Hong & Ahmed Khwaja, 2018. "The Dynamic Spillovers of Entry: An Application to the Generic Drug Industry," Management Science, INFORMS, vol. 64(3), pages 1189-1211, March.
  30. Hong, Han & Li, Weiming & Wang, Boyu, 2015. "Estimation of dynamic discrete models from time aggregated data," Journal of Econometrics, Elsevier, vol. 188(2), pages 435-446.
  31. Hu Yingyao & Shum Matthew & Tan Wei & Xiao Ruli, 2017. "A Simple Estimator for Dynamic Models with Serially Correlated Unobservables," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-16, January.
  32. Liu, Xiaobin & Li, Yong & Yu, Jun & Zeng, Tao, 2022. "Posterior-based Wald-type statistics for hypothesis testing," Journal of Econometrics, Elsevier, vol. 230(1), pages 83-113.
  33. Yiyi Zhou, 2017. "Bayesian Estimation of a Dynamic Model of Two-Sided Markets: Application to the U.S. Video Game Industry," Management Science, INFORMS, vol. 63(11), pages 3874-3894, November.
  34. Shunyuan Zhang & Param Vir Singh & Anindya Ghose, 2019. "A Structural Analysis of the Role of Superstars in Crowdsourcing Contests," Service Science, INFORMS, vol. 30(1), pages 15-33, March.
  35. Shintaro Yamaguchi, 2012. "Tasks and Heterogeneous Human Capital," Journal of Labor Economics, University of Chicago Press, vol. 30(1), pages 1-53.
  36. Keane, Michael P. & Todd, Petra E. & Wolpin, Kenneth I., 2011. "The Structural Estimation of Behavioral Models: Discrete Choice Dynamic Programming Methods and Applications," Handbook of Labor Economics, in: O. Ashenfelter & D. Card (ed.), Handbook of Labor Economics, edition 1, volume 4, chapter 4, pages 331-461, Elsevier.
  37. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Other publications TiSEM f5784a49-7053-401d-855d-1, Tilburg University, School of Economics and Management.
  38. Gianni Amisano & Maria Letizia Giorgetti, 2013. "Entry Into Pharmaceutical Submarkets: A Bayesian Panel Probit Analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(4), pages 667-701, June.
  39. Fowler, Stuart J. & Fowler, Jennifer J. & Seagraves, Philip A. & Beauchamp, Charles F., 2018. "A fundamentalist theory of real estate market outcomes," Economic Modelling, Elsevier, vol. 73(C), pages 295-305.
  40. Jason R. Blevins, 2016. "Sequential Monte Carlo Methods for Estimating Dynamic Microeconomic Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(5), pages 773-804, August.
  41. Panle Jia Barwick & Parag A. Pathak, 2015. "The costs of free entry: an empirical study of real estate agents in Greater Boston," RAND Journal of Economics, RAND Corporation, vol. 46(1), pages 103-145, March.
  42. Han Hong & Ahmed Khwaja & A. Ronald Gallant, 2008. "Estimating Dynamic Games of Complete Information with an Application to the Generic Pharmaceutical Industry," 2008 Meeting Papers 1050, Society for Economic Dynamics.
  43. Vineet Kumar & Yacheng Sun, 2020. "Designing Pricing Strategy for Operational and Technological Transformation," Management Science, INFORMS, vol. 66(6), pages 2706-2734, June.
  44. Li, Yong & Liu, Xiao-Bin & Yu, Jun, 2015. "A Bayesian chi-squared test for hypothesis testing," Journal of Econometrics, Elsevier, vol. 189(1), pages 54-69.
  45. Xiao Liu & Alan Montgomery & Kannan Srinivasan, 2018. "Analyzing Bank Overdraft Fees with Big Data," Marketing Science, INFORMS, vol. 37(6), pages 855-882, November.
  46. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
  47. Yacheng Sun & Shibo Li & Baohong Sun, 2015. "An Empirical Analysis of Consumer Purchase Decisions Under Bucket-Based Price Discrimination," Marketing Science, INFORMS, vol. 34(5), pages 646-668, September.
  48. Hu, Yingyao, 2017. "The Econometrics of Unobservables -- Latent Variable and Measurement Error Models and Their Applications in Empirical Industrial Organization and Labor Economics [The Econometrics of Unobservables]," Economics Working Paper Archive 64578, The Johns Hopkins University,Department of Economics, revised 2021.
  49. Christopher Ferrall, 2023. "Object Oriented (Dynamic) Programming: Closing the “Structural” Estimation Coding Gap," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 761-816, October.
  50. Stuart J. Fowler & Jennifer J. Wilgus, 2011. "An Estimatable DCDP Model of Search and Matching in Real Estate Markets," Working Papers 201105, Middle Tennessee State University, Department of Economics and Finance.
  51. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
  52. Yong Tan, 2019. "Dynamic Entry With Demand And Supply Side Spillovers," Contemporary Economic Policy, Western Economic Association International, vol. 37(1), pages 86-101, January.
  53. Sara Amoroso, 2014. "The hidden costs of R&D collaboration," JRC Working Papers on Corporate R&D and Innovation 2014-02, Joint Research Centre.
  54. Andriy Norets, 2010. "Continuity and differentiability of expected value functions in dynamic discrete choice models," Quantitative Economics, Econometric Society, vol. 1(2), pages 305-322, November.
  55. Jean-Pierre Dubé & K. Sudhir & Andrew Ching & Gregory Crawford & Michaela Draganska & Jeremy Fox & Wesley Hartmann & Günter Hitsch & V. Viard & Miguel Villas-Boas & Naufel Vilcassim, 2005. "Recent Advances in Structural Econometric Modeling: Dynamics, Product Positioning and Entry," Marketing Letters, Springer, vol. 16(3), pages 209-224, December.
  56. Carl F. Mela, 2011. "Structural Workshop Paper --Data Selection and Procurement," Marketing Science, INFORMS, vol. 30(6), pages 965-976, November.
  57. Richard E. Howitt & Siwa Msangi & Arnaud Reynaud & Keith C. Knapp, 2005. "Estimating Intertemporal Preferences for Natural Resource Allocation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(4), pages 969-983.
  58. Peter Arcidiacono & Robert A. Miller, 2011. "Conditional Choice Probability Estimation of Dynamic Discrete Choice Models With Unobserved Heterogeneity," Econometrica, Econometric Society, vol. 79(6), pages 1823-1867, November.
  59. Matthew Osborne, 2011. "Consumer learning, switching costs, and heterogeneity: A structural examination," Quantitative Marketing and Economics (QME), Springer, vol. 9(1), pages 25-70, March.
  60. Daniel dos Santos, "undated". "The choice of major: effects on wages and an evaluatio of the no-switching majors rule," Working Papers 09_06, Universidade de São Paulo, Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto.
  61. Peter Haan & Daniel Kemptner & Arne Uhlendorff, 2015. "Bayesian procedures as a numerical tool for the estimation of an intertemporal discrete choice model," Empirical Economics, Springer, vol. 49(3), pages 1123-1141, November.
  62. Steve Berry & Ahmed Khwaja & Vineet Kumar & Andres Musalem & Kenneth Wilbur & Greg Allenby & Bharat Anand & Pradeep Chintagunta & W. Hanemann & Przemek Jeziorski & Angelo Mele, 2014. "Structural models of complementary choices," Marketing Letters, Springer, vol. 25(3), pages 245-256, September.
  63. Olivier Toubia & Andrew T. Stephen, 2013. "Intrinsic vs. Image-Related Utility in Social Media: Why Do People Contribute Content to Twitter?," Marketing Science, INFORMS, vol. 32(3), pages 368-392, May.
  64. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
  65. Gallant, A. Ronald & Hong, Han & Khwaja, Ahmed, 2018. "A Bayesian approach to estimation of dynamic models with small and large number of heterogeneous players and latent serially correlated states," Journal of Econometrics, Elsevier, vol. 203(1), pages 19-32.
  66. Ji, Yongjie & Rabotyagov, Sergey & Kling, Catherine L., 2014. "Crop Choice and Rotational Effects: A Dynamic Model of Land Use in Iowa in Recent Years," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170366, Agricultural and Applied Economics Association.
  67. Kasahara, Hiroyuki & Shimotsu, Katsumi, 2008. "Pseudo-likelihood estimation and bootstrap inference for structural discrete Markov decision models," Journal of Econometrics, Elsevier, vol. 146(1), pages 92-106, September.
  68. Philipp Eisenhauer & Lena Janys & Christopher Walsh & Janós Gabler, 2023. "Structural Models for Policy-Making," CRC TR 224 Discussion Paper Series crctr224_2023_484, University of Bonn and University of Mannheim, Germany.
  69. Andriy Norets, 2009. "Inference in Dynamic Discrete Choice Models With Serially orrelated Unobserved State Variables," Econometrica, Econometric Society, vol. 77(5), pages 1665-1682, September.
  70. Chul Kim & P. K. Kannan & Michael Trusov & Andrea Ordanini, 2020. "Modeling Dynamics in Crowdfunding," Marketing Science, INFORMS, vol. 39(2), pages 339-365, March.
  71. Xi Chen & Ralf van der Lans & Michael Trusov, 2021. "Efficient Estimation of Network Games of Incomplete Information: Application to Large Online Social Networks," Management Science, INFORMS, vol. 67(12), pages 7575-7598, December.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.