My bibliography
Save this item
An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
- Del Negro, Marco & Schorfheide, Frank, 2008.
"Forming priors for DSGE models (and how it affects the assessment of nominal rigidities),"
Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
- Marco Del Negro & Frank Schorfheide, 2006. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," FRB Atlanta Working Paper 2006-16, Federal Reserve Bank of Atlanta.
- Marco Del Negro & Frank Schorfheide, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Staff Reports 320, Federal Reserve Bank of New York.
- Marco Del Negro & Frank Schorfheide, 2008. "Forming Priors for DSGE Models (and How it Affects the Assessment of Nominal Rigidities)," NBER Working Papers 13741, National Bureau of Economic Research, Inc.
- Frank Schorfheide & Marco Del Negro, 2007. "Forming Priors for DSGE Models (and How It Affects the Assessment of Nominal Rigidities)," 2007 Meeting Papers 283, Society for Economic Dynamics.
- Del Negro, Marco & Schorfheide, Frank, 2007. "Forming Priors for DSGE Models (and How It Affects the Assessment of Nominal Rigidities)," CEPR Discussion Papers 6119, C.E.P.R. Discussion Papers.
- Takuo Matsubara & Jeremias Knoblauch & François‐Xavier Briol & Chris J. Oates, 2022. "Robust generalised Bayesian inference for intractable likelihoods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(3), pages 997-1022, July.
- Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
- Max J. Pachali & Peter Kurz & Thomas Otter, 0. "How to generalize from a hierarchical model?," Quantitative Marketing and Economics (QME), Springer, vol. 0, pages 1-38.
- Shen, Yunyi & Olson, Erik R. & Van Deelen, Timothy R., 2021. "Spatially explicit modeling of community occupancy using Markov Random Field models with imperfect observation: Mesocarnivores in Apostle Islands National Lakeshore," Ecological Modelling, Elsevier, vol. 459(C).
- Tetyana Kosyakova & Thomas Otter & Sanjog Misra & Christian Neuerburg, 2020. "Exact MCMC for Choices from Menus—Measuring Substitution and Complementarity Among Menu Items," Marketing Science, INFORMS, vol. 39(2), pages 427-447, March.
- Wanchuang Zhu & Yanan Fan, 2023. "A synthetic likelihood approach for intractable markov random fields," Computational Statistics, Springer, vol. 38(2), pages 749-777, June.
- Cécile Hardouin & Xavier Guyon, 2014. "Recursions on the marginals and exact computation of the normalizing constant for Gibbs processes," Computational Statistics, Springer, vol. 29(6), pages 1637-1650, December.
- Solaiman Afroughi & Soghrat Faghihzadeh & Majid Jafari Khaledi & Mehdi Ghandehari Motlagh & Ebrahim Hajizadeh, 2011. "Analysis of clustered spatially correlated binary data using autologistic model and Bayesian method with an application to dental caries of 3--5-year-old children," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2763-2774, February.
- Lombardi, Marco J. & Nicoletti, Giulio, 2012.
"Bayesian prior elicitation in DSGE models: Macro- vs micropriors,"
Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 294-313.
- Lombardi, Marco J. & Nicoletti, Giulio, 2011. "Bayesian prior elicitation in DSGE models: macro- vs micro-priors," Working Paper Series 1289, European Central Bank.
- Jieying Jiao & Guanyu Hu & Jun Yan, 2021. "Heterogeneity pursuit for spatial point pattern with application to tree locations: A Bayesian semiparametric recourse," Environmetrics, John Wiley & Sons, Ltd., vol. 32(7), November.
- Jonathan U Harrison & Ruth E Baker, 2020. "An automatic adaptive method to combine summary statistics in approximate Bayesian computation," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
- C Rohrbeck & D A Costain & A Frigessi, 2018. "Bayesian spatial monotonic multiple regression," Biometrika, Biometrika Trust, vol. 105(3), pages 691-707.
- Yang Ni & Veerabhadran Baladandayuthapani & Marina Vannucci & Francesco C. Stingo, 2022. "Bayesian graphical models for modern biological applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 197-225, June.
- Roberto Casarin & Fabrizio Leisen & German Molina & Enrique ter Horst, 2014.
"A Bayesian Beta Markov Random Field Calibration of the Term Structure of Implied Risk Neutral Densities,"
Papers
1409.1956, arXiv.org.
- Roberto Casarin & Fabrizio Leisen & German Molina & Enrique Ter Horst, 2014. "A Bayesian Beta Markov Random Field calibration of the term structure of implied risk neutral densities," Working Papers 2014:22, Department of Economics, University of Venice "Ca' Foscari".
- Jin, Ick Hoon & Liang, Faming, 2014. "Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 402-416.
- Park, Jaewoo & Jin, Ick Hoon & Schweinberger, Michael, 2022. "Bayesian model selection for high-dimensional Ising models, with applications to educational data," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
- Bee, Marco & Benedetti, Roberto & Espa, Giuseppe, 2017. "Approximate maximum likelihood estimation of the Bingham distribution," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 84-96.
- Chih-Sheng Hsieh & Michael D. König & Xiaodong Liu, 2012.
"Network formation with local complements and global substitutes: the case of R&D networks,"
ECON - Working Papers
217, Department of Economics - University of Zurich, revised Feb 2017.
- Koenig, Michael & Hsieh, Chih-Sheng & Liu, Xiaodong, 2018. "Network Formation with Local Complements and Global Substitutes: The Case of R&D Networks," CEPR Discussion Papers 13161, C.E.P.R. Discussion Papers.
- Faming Liang & Ick Hoon Jin & Qifan Song & Jun S. Liu, 2016. "An Adaptive Exchange Algorithm for Sampling From Distributions With Intractable Normalizing Constants," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 377-393, March.
- Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
- Chen, Jiaxun & Micheas, Athanasios C. & Holan, Scott H., 2022. "Hierarchical Bayesian modeling of spatio-temporal area-interaction processes," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Max J. Pachali & Peter Kurz & Thomas Otter, 2020. "How to generalize from a hierarchical model?," Quantitative Marketing and Economics (QME), Springer, vol. 18(4), pages 343-380, December.
- Maarten Marsman & Gunter Maris & Timo Bechger & Cees Glas, 2017. "Turning Simulation into Estimation: Generalized Exchange Algorithms for Exponential Family Models," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-15, January.
- Michael L. Stein, 2021. "A parametric model for distributions with flexible behavior in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
- Johan Koskinen & Galina Daraganova, 2022. "Bayesian analysis of social influence," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 1855-1881, October.
- repec:dau:papers:123456789/5724 is not listed on IDEAS
- Ninna Vihrs & Jesper Møller & Alan E. Gelfand, 2022. "Approximate Bayesian inference for a spatial point process model exhibiting regularity and random aggregation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(1), pages 185-210, March.
- Donatello Telesca & Peter Müller & Steven M. Kornblau & Marc A. Suchard & Yuan Ji, 2012. "Modeling Protein Expression and Protein Signaling Pathways," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1372-1384, December.
- Yize Zhao & Zhe Sun & Jian Kang, 2022. "Discussion to: Bayesian graphical models for modern biological applications by Y. Ni, V. Baladandayuthapani, M. Vannucci and F.C. Stingo," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 279-286, June.
- Drovandi, Christopher C. & Pettitt, Anthony N., 2011. "Likelihood-free Bayesian estimation of multivariate quantile distributions," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2541-2556, September.
- James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.