IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v71y2014icp402-416.html
   My bibliography  Save this article

Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants

Author

Listed:
  • Jin, Ick Hoon
  • Liang, Faming

Abstract

Statistical inference for the models with intractable normalizing constants has attracted much attention. During the past two decades, various approximation- or simulation-based methods have been proposed for the problem, such as the Monte Carlo maximum likelihood method and the auxiliary variable Markov chain Monte Carlo methods. The Bayesian stochastic approximation Monte Carlo algorithm specifically addresses this problem: It works by sampling from a sequence of approximate distributions with their average converging to the target posterior distribution, where the approximate distributions can be achieved using the stochastic approximation Monte Carlo algorithm. A strong law of large numbers is established for the Bayesian stochastic approximation Monte Carlo estimator under mild conditions. Compared to the Monte Carlo maximum likelihood method, the Bayesian stochastic approximation Monte Carlo algorithm is more robust to the initial guess of model parameters. Compared to the auxiliary variable MCMC methods, the Bayesian stochastic approximation Monte Carlo algorithm avoids the requirement for perfect samples, and thus can be applied to many models for which perfect sampling is not available or very expensive. The Bayesian stochastic approximation Monte Carlo algorithm also provides a general framework for approximate Bayesian analysis.

Suggested Citation

  • Jin, Ick Hoon & Liang, Faming, 2014. "Use of SAMC for Bayesian analysis of statistical models with intractable normalizing constants," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 402-416.
  • Handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:402-416
    DOI: 10.1016/j.csda.2012.07.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947312002770
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2012.07.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Magnussen, Steen & Reeves, Rob, 2008. "A method for bias-reduction of sample-based MLE of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 103-111, September.
    2. Johnson, Timothy D. & Piert, Morand, 2009. "A Bayesian analysis of dual autoradiographic images," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4570-4583, October.
    3. A. N. Pettitt & N. Friel & R. Reeves, 2003. "Efficient calculation of the normalizing constant of the autologistic and related models on the cylinder and lattice," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(1), pages 235-246, February.
    4. J. Møller & A. N. Pettitt & R. Reeves & K. K. Berthelsen, 2006. "An efficient Markov chain Monte Carlo method for distributions with intractable normalising constants," Biometrika, Biometrika Trust, vol. 93(2), pages 451-458, June.
    5. Liang, Faming & Liu, Chuanhai & Carroll, Raymond J., 2007. "Stochastic Approximation in Monte Carlo Computation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 305-320, March.
    6. Bognar, Matthew A., 2005. "Bayesian inference for spatially inhomogeneous pairwise interacting point processes," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 1-18, April.
    7. Nial Friel & Håvard Rue, 2007. "Recursive computing and simulation-free inference for general factorizable models," Biometrika, Biometrika Trust, vol. 94(3), pages 661-672.
    8. Fuchun Huang & Yosihiko Ogata, 2002. "Generalized Pseudo-Likelihood Estimates for Markov Random Fields on Lattice," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 54(1), pages 1-18, March.
    9. Ming Gao Gu & Hong‐Tu Zhu, 2001. "Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 339-355.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Faming Liang & Ick Hoon Jin & Qifan Song & Jun S. Liu, 2016. "An Adaptive Exchange Algorithm for Sampling From Distributions With Intractable Normalizing Constants," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 377-393, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Faming Liang & Ick Hoon Jin & Qifan Song & Jun S. Liu, 2016. "An Adaptive Exchange Algorithm for Sampling From Distributions With Intractable Normalizing Constants," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 377-393, March.
    2. Rajala, T. & Penttinen, A., 2014. "Bayesian analysis of a Gibbs hard-core point pattern model with varying repulsion range," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 530-541.
    3. Solaiman Afroughi & Soghrat Faghihzadeh & Majid Jafari Khaledi & Mehdi Ghandehari Motlagh & Ebrahim Hajizadeh, 2011. "Analysis of clustered spatially correlated binary data using autologistic model and Bayesian method with an application to dental caries of 3--5-year-old children," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(12), pages 2763-2774, February.
    4. Cécile Hardouin & Xavier Guyon, 2014. "Recursions on the marginals and exact computation of the normalizing constant for Gibbs processes," Computational Statistics, Springer, vol. 29(6), pages 1637-1650, December.
    5. Wanchuang Zhu & Yanan Fan, 2023. "A synthetic likelihood approach for intractable markov random fields," Computational Statistics, Springer, vol. 38(2), pages 749-777, June.
    6. Chih-Sheng Hsieh & Michael D. König & Xiaodong Liu, 2012. "Network formation with local complements and global substitutes: the case of R&D networks," ECON - Working Papers 217, Department of Economics - University of Zurich, revised Feb 2017.
    7. Bee, Marco & Espa, Giuseppe & Giuliani, Diego, 2015. "Approximate maximum likelihood estimation of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 84(C), pages 14-26.
    8. Laleh Tafakori & Armin Pourkhanali & Riccardo Rastelli, 2022. "Measuring systemic risk and contagion in the European financial network," Empirical Economics, Springer, vol. 63(1), pages 345-389, July.
    9. Del Negro, Marco & Schorfheide, Frank, 2008. "Forming priors for DSGE models (and how it affects the assessment of nominal rigidities)," Journal of Monetary Economics, Elsevier, vol. 55(7), pages 1191-1208, October.
    10. Jaehee Kim & Sooyoung Cheon, 2010. "A Bayesian regime‐switching time‐series model," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(5), pages 365-378, September.
    11. Faming Liang & Momiao Xiong, 2013. "Bayesian Detection of Causal Rare Variants under Posterior Consistency," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-16, July.
    12. Bee, Marco & Benedetti, Roberto & Espa, Giuseppe, 2017. "Approximate maximum likelihood estimation of the Bingham distribution," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 84-96.
    13. Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
    14. L. Sun & M. K. Clayton, 2008. "Bayesian Analysis of Crossclassified Spatial Data with Autocorrelation," Biometrics, The International Biometric Society, vol. 64(1), pages 74-84, March.
    15. James C. Russell & Ephraim M. Hanks & Murali Haran, 2016. "Dynamic Models of Animal Movement with Spatial Point Process Interactions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 21(1), pages 22-40, March.
    16. Koutchade, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modeling of production decisions of heterogeneous farmers with random parameter models," Working Papers 210097, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    17. Magnussen, Steen & Reeves, Rob, 2008. "A method for bias-reduction of sample-based MLE of the autologistic model," Computational Statistics & Data Analysis, Elsevier, vol. 53(1), pages 103-111, September.
    18. Max J. Pachali & Peter Kurz & Thomas Otter, 2020. "How to generalize from a hierarchical model?," Quantitative Marketing and Economics (QME), Springer, vol. 18(4), pages 343-380, December.
    19. Michael L. Stein, 2021. "A parametric model for distributions with flexible behavior in both tails," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    20. Tetyana Kosyakova & Thomas Otter & Sanjog Misra & Christian Neuerburg, 2020. "Exact MCMC for Choices from Menus—Measuring Substitution and Complementarity Among Menu Items," Marketing Science, INFORMS, vol. 39(2), pages 427-447, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:71:y:2014:i:c:p:402-416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.